Geoingeniería Avanzada Vol.II Scalar Weapons

Observatorio de Geoingeniería en España

   A menudo se ha especulado en los círculos civiles, sobre la utilización de Tecnología Escalar en Modificación Climática, desde que en 2001, se prohibiera su uso en el «Acta para la Preservación del Espacio» (ya documentado en anteriores Post).

Ver la entrada original 2.498 palabras más

Identificación de patrones en vacunas de corona virus: nanorouters

 admin  Publicado el

25 de noviembre de 2021

Identificación de patrones en vacunas de corona virus: nanorouters

Desde que se descubrió el óxido de grafeno en las vacunas contra el Coronavirus, todos los hallazgos y descubrimientos realizados no hacen más que confirmar su presencia (Campra, P. 2021). Hasta la fecha, también ha habido pruebas e indicios más que razonables de la existencia de nanotubos de carbono y nanopulpos esferas mesoporosas , nanorobots coloidales ; objetos que no deben formar parte de ninguna vacuna y que no están declarados entre los componentes de la misma. Adicionalmente, se han identificado y evidenciado otro tipo de objetos en imágenes de muestras de sangre, de personas vacunadas con las vacunas del Coronavirus, específicamente también micronadadores nanoantenas de grafeno cristalizado puntos cuánticos de grafeno . conocido como GQD.

En esta ocasión, analizando una de las imágenes obtenidas por el Dr. Campra , correspondiente a una muestra de la vacuna de Pfizer, ver figura 1, se ha descubierto que, con mucha probabilidad, se trata de un nanorouter o parte de su circuitería. En la imagen original se aprecia una gota bien definida en la que aparecen estructuras cristalinas de formato cuadrangular o cúbico. Si te fijas bien, puedes ver unas marcas en estos cristales, con un patrón regular, bien definido en algunos casos, pero limitado por la óptica del microscopio.

Fig. 1. Formaciones cristalinas que muestran marcas de lo que parecen ser circuitos. Entre estos objetos se ha descubierto el circuito de lo que podría ser un nanorouter. Imagen de una muestra de la vacuna de Pfizer, obtenida por (Campra, P. 2021)

El hallazgo ha sido posible aislando cada cristal cuadrangular, aplicando un proceso de rasterización, enfoque y delineado de los bordes de la imagen, con el fin de pronunciar aún más las marcas observadas. Una vez que se completó este proceso, se dibujó un borrador con las líneas y patrones inscritos en el vidrio, creando un contorno limpio de lo que realmente parecía un circuito. Fue muy llamativo el hecho de encontrar líneas paralelas y perpendiculares con una distribución alejada de los patrones fractales, lo que nos permitió inferir automáticamente la posibilidad de que hubiera sido un producto de fabricación. Por lo tanto, se buscaron patrones similares en la literatura científica, que tuvieran un esquema similar, similar al circuito que se acababa de dibujar. El resultado de la búsqueda fue casi inmediato,

Fig. 2. Posible nanorouter de puntos cuánticos observado en un cristal cuadrangular, en una imagen obtenida por el doctor (Campra, P. 2021). En la esquina inferior derecha se observa el circuito nanorouter de puntos cuánticos publicado por (Sardinha, LH.; Costa, AM.; Neto, OPV.; Vieira, LF.; Vieira, MA 2013). Note la semejanza obvia entre el boceto, la forma inscrita en el cristal y el circuito de puntos cuánticos.

Este descubrimiento es de fundamental relevancia, no solo para entender el verdadero propósito y componentes de las vacunas contra el Coronavirus, sino también para explicar la existencia del fenómeno de las direcciones MAC, visibles a través del bluetooth de muchos dispositivos móviles.

Contexto de descubrimiento

Antes de proceder a la explicación del hallazgo, conviene recordar el contexto en el que se enmarca, con el fin de asegurar su comprensión y posterior profundización.

En primer lugar, hay que tener en cuenta que el grafeno y sus derivados, el óxido de grafeno (GO) y los nanotubos de carbono (CNT), forman parte de los componentes de las vacunas, según ya se ha comentado en este blog. Las propiedades del grafeno son excepcionales desde el punto de vista físico, pero también termodinámico, electrónico, mecánico y magnético. Sus características permiten su uso como superconductor, material absorbente de ondas electromagnéticas (microondas EM), emisor, receptor de señales, antena cuántica, lo que permite crear electrónica avanzada a escala nano y micrométrica. Tal es así, que es el nanomaterial fundamental para el desarrollo de la nanobiomedicina (Mitragotri, S .; Anderson, DG; Chen, X .; Chow, EK; Ho, D .; Kabanov, AV; Xu, C. 2015 ), redes de nanocomunicación (Kumar, MR 2019), nuevas terapias de administración de fármacos (Yu, J .; Zhang, Y .; Yan, J .; Kahkoska, AR; Gu, Z. 2018) y tratamientos contra el cáncer (Huang, G . ; Huang, H. 2018) y el tratamiento neurológico de enfermedades neurodegenerativas (John, AA; Subramanian, AP; Vellayappan, MV; Balaji, A .; Mohandas, H .; Jaganathan, SK 2015 ). Sin embargo, dejando de lado todos los beneficios, la literatura científica es muy clara en cuanto a las implicaciones para la salud del cuerpo humano. Es bien sabido que el grafeno (G), el óxido de grafeno (GO) y otros derivados como los nanotubos de carbono (CNT) son tóxicos en casi todas sus formas, provocando mutagénesis, muerte celular (apoptosis), liberación de radicales libres, toxicidad pulmonar, neumonía bilateral, genotoxicidad o daño en el ADN, inflamación, inmunosupresión, Daños y toxicidad del óxido de grafeno ” y de “ Daño y toxicidad de los nanotubos de carbono-grafeno ”.

En segundo lugar, el grafeno es un nanomaterial radiomodulable, capaz de absorber ondas electromagnéticas y multiplicar la radiación, actuando como una nanoantena , o un repetidor de señal (Chen, Y .; Fu, X .; Liu, L .; Zhang , Y .; Cao, L .; Yuan, D .; Liu, P. 2019). La exposición a la radiación electromagnética puede provocar la exfoliación del material en partículas más pequeñas (Lu, J .; Yeo, PSE; Gan, CK; Wu, P .; Loh, KP 2011), denominadas puntos cuánticos de grafeno o GQD (Graphene Quantum Dots), cuyas propiedades físicas y particularidades mejoran por su escala aún menor, debido al efecto “Quantum Hall”, ya que actúan amplificando las señales electromagnéticas (Massicotte, M.; Yu, V.; Whiteway, E.; Vatnik, D.; Hilke, M. 2013 | Zhang, X.; Zhou, Q.; Yuan, M.; Liao, B.; Wu, X.; Ying, M. 2020), y con ello la distancia de emisión, especialmente en ambientes como el cuerpo humano (Chopra, N .; Phipott, M ​​.; Alomainy, A .; Abbasi, QH; Qaraqe, K .; Shubair, RM 2016).

La capacidad superconductora y transductora hacen del grafeno uno de los materiales más adecuados para crear redes inalámbricas de nanocomunicación para la administración de nanotecnología en el cuerpo humano . Este enfoque ha sido trabajado intensamente por la comunidad científica, después de haber encontrado y analizado los protocolos y especificaciones disponibles , pero también los sistemas de enrutamiento de los paquetes de datos que sería generado por nano-dispositivos y nano-nodos dentro del cuerpo, en un sistema complejo llamado CORONA, cuyo objetivo es la transmisión efectiva de señales y datos en la red, optimizando el consumo de energía (al mínimo posible), y también reduciendo fallas en la transmisión de paquetes de datos (Bouchedjera, IA ; Aliouat, Z .; Louail, L. 2020 | Bouchedjera, IA; Louail, L .; Aliouat, Z .; Harous, S. 2020 | Tsioliaridou, A .; Liaskos, C .; Ioannidis, S.; Pitsillides, A. 2015). En esta red de nanocomunicaciones se utiliza un tipo de señal TS-OOK (Time-Spread On-Off Keying) que permite transmitir códigos binarios de 0 y 1, a través de pulsos cortos que implican la activación y desactivación de la señal durante intervalos de tiempo muy pequeños. de unos pocos femtosegundos (Zhang, R .; Yang, K .; Abbasi, QH; Karaqe, KA; Alomainy, A. 2017 | Vavouris, AK; Dervisi, FD; Papanikolaou, VK; Karagiannidis, GK 2018). Debido a la complejidad de las nanocomunicaciones en el cuerpo humano, donde los nano-nodos de la red se distribuyen por todo el cuerpo, en muchos casos en movimiento, debido al flujo sanguíneo, y en otros adheridos al endotelio de las paredes arteriales y capilares o en los tejidos de otros órganos, los investigadores han requerido el desarrollo de software para la simulación de tales condiciones , con el fin de verificar y validar los protocolos de nanocomunicación que se estaban desarrollando (Dhoutaut, D.; Arrabal, T.; Dedu, E. 2018).

Por otro lado, la red de nanocomunicaciones orientada al cuerpo humano (Balghusoon, AO.; Mahfoudh, S. 2020), ha sido cuidadosamente diseñada en sus aspectos topológicos, concibiendo componentes especializados en el desempeño de esta tarea. Por ejemplo, la nanocomunicación electromagnética está formada en su capa más básica por nano-nodos que son dispositivos (presuntamente hechos de grafeno, nanotubos de carbono, GQD, entre otros objetos y materiales) que tienen la capacidad de interactuar como nanosensores, actuadores piezoeléctricos, y en todo caso como nano-antenas que propagan las señales al resto de los nano-nodos. Los nano-nodos, encuentran en los nano-routers (también llamados nano-controladores) el siguiente paso en la topología. Su función es recibir las señales emitidas por los nano-nodos, procesarlos y enviarlos a las nano-interfaces, que los emitirán al exterior del cuerpo con la frecuencia y alcance necesario, ya que debe superar la barrera de la piel sin perder claridad en la señal, para que pueda ser recibida por un dispositivo móvil a una distancia lo suficientemente cercana (generalmente unos pocos metros). Ese dispositivo móvil sería en realidad un teléfono inteligente o cualquier otro dispositivo con conexión a Internet, lo que le permite actuar como una «Puerta de enlace». La topología también define la posibilidad de que toda la infraestructura de nanonodos, nanorouter y nanointerfaz se unifique en un solo nanodispositivo, llamado polo o metamaterial definido por el software SDM (Lee, SJ; Jung, C.; Choi, K .; Kim, S. 2015). Este modelo simplifica la topología, pero aumenta el tamaño del dispositivo y la complejidad de su construcción, concebida en varias capas de grafeno. En cualquier caso, independientemente de la topología, los nanorouters son necesarios para enrutar y decodificar correctamente las señales, para su envío, pero también para su recepción, ya que pueden estar diseñados para un servicio bidireccional, lo que de facto implica la capacidad de recibir señales. de comandos, órdenes, operaciones que interactúan con los objetos de la red.

A la nanocomunicación electromagnética hay que añadir la nanocomunicación molecular, abordada en la entrada sobre nanotubos de carbono nueva evidencia en muestras de vacunas. En ambas publicaciones se analizan las implicaciones de estos objetos en el campo de la neurociencia, la neuromodulación y la neuroestimulación, ya que si se localizan en el tejido neuronal (algo muy probable, dada la capacidad de superar la barrera hematoencefálica), pueden establecer conexiones que unen la sinapsis neuronal. Esto quiere decir que unen neuronas con diferentes atajos, más cortos que los axones naturales (Fabbro, A.; Cellot, G.; Prato, M.; Ballerini, L. 2011). Si bien este se puede utilizar en tratamientos experimentales para paliar los efectos de enfermedades neurodegenerativas, también se puede utilizar para interferir directamente en las neuronas, la secreción de neurotransmisores como la dopamina, la activación involuntaria de determinadas zonas del cerebro, su neuroestimulación o modulación, a través de impulsos eléctricos, generados a partir de nanotubos de carbono (Suzuki, J.; Budiman, H.; Carr, TA; DeBlois, JH 2013 | Balasubramaniam, S.; Boyle, NT; Della-Chiesa, A.; Walsh, F.; Mardinoglu , A .; Botvich, D .; Prina-Mello, A. 2011), como resultado de la recepción de señales y pulsos electromagnéticos de la red de nanocomunicaciones (Akyildiz, IF; Jornet, JM 2010). No es necesario advertir sobre lo que significa que una señal externa, no controlada por la persona inoculada, es la que rige la segregación de neurotransmisores. Use un ejemplo para crear conciencia; Los nanotubos de carbono alojados en el tejido neuronal podrían interferir en el funcionamiento natural de la secreción de neurotransmisores como la dopamina, responsable en parte de los procesos cognitivos, la socialización, el sistema de recompensa, el deseo, placer, aprendizaje condicionado o inhibición (Beyene, AG; Delevich, K .; Del Bonis-O’Donnell, JT; Piekarski, DJ; Lin, WC; Thomas, AW; Landry, MP 2019 | Sun, F .; Zhou, J .; Dai, B. ; Qian, T .; Zeng, J .; Li, X .; Li, Y. 2020 | Sun, F .; Zeng, J .; Jing, M .; Zhou, J .; Feng, J.; Owen, SF; Li, Y. 2018 | Patriarchi, T.; Mohebi, A.; Sun, J.; Marley, A.; Liang, R.; Dong, C.; Tian, ​​L. 2020 | Patriarchi, T.; Cho, JR; Merten, K.; Howe, MW; Marley, A.; Xiong, WH; Tian, ​​L. 2018). Esto quiere decir que podría inferirse en los patrones normales de comportamiento de las personas, sus sentimientos y pensamientos, e incluso forzar un aprendizaje condicionado subliminal, sin que el individuo sea consciente de lo que está sucediendo. Además de las propiedades ya mencionadas, Los nanotubos de carbono no solo abren las puertas a la interacción inalámbrica del cerebro humano, sino que también pueden recibir señales eléctricas de las neuronas y propagarlas a los nanorutadores, ya que también tienen las mismas propiedades que las nanoantenas de grafeno GQD y los puntos cuánticos, como se explica en (Demoustier, S .; Minoux, E .; Le Baillif, M .; Charles, M .; Ziaei, A. 2008 | Wang, Y .; Wu, Q .; Shi, W .; He, X .; Sun, X.; Gui, T. 2008 | Da-Costa, MR; Kibis, OV; Portnoi, ME 2009). Esto significa que pueden transmitir y monitorear la actividad neuronal de los individuos. Le Baillif, M.; Carlos, M.; Ziaei, A. 2008 | Wang, Y.; Wu, Q.; Shi, W.; él, X.; Sol, X.; Gui, T. 2008 | Da-Costa, MR; Kibis, VO; Portnoi, ME 2009). Esto significa que pueden transmitir y monitorear la actividad neuronal de los individuos. Le Baillif, M.; Carlos, M.; Ziaei, A. 2008 | Wang, Y.; Wu, Q.; Shi, W.; él, X.; Sol, X.; Gui, T. 2008 | Da-Costa, MR; Kibis, VO; Portnoi, ME 2009). Esto significa que pueden transmitir y monitorear la actividad neuronal de los individuos.

Para que los paquetes de datos emitidos y recibidos desde la red de nanocomunicaciones lleguen a su destino, es fundamental que el protocolo de comunicación implemente de alguna manera la identificación única de los nanodispositivos (es decir, a través de MAC) y transmita la información a una dirección IP. defecto. En este sentido, el cuerpo humano se convierte en un servidor IoNT (del Internet de las NanoCosas) en el que se puede asimilar el modelo de comunicación cliente/servidor. Quedan por determinar los mecanismos, comandos o tipos de solicitud, así como la frecuencia exacta y el tipo de señal que opera la red inalámbrica de nanocomunicaciones que se instalaría con cada vacuna, aunque obviamente esta información debe ser muy confidencial, dadas las posibles consecuencias. de biohackeo. (Vassiliou, V. 2011) que podría suceder. De hecho, en el trabajo de (Al-Turjman, F. 2020) se vinculan los problemas y circunstancias de la seguridad de las redes de nanocomunicaciones conectadas a 5G (confidencialidad, autenticación, privacidad, confianza, intrusiones, repudio) y adicionalmente se presenta un resumen del funcionamiento de la comunicación electromagnética entre nano-nodos, nano-sensores y nano-routers, utilizando antenas de grafeno y transceptores para su enlace con servidores de datos, con el fin de desarrollar proyectos de Big-data. Cabe señalar que los riesgos del hackeo de redes son muy similares a los que se pueden perpetrar en cualquier red conectada a Internet (ataque de enmascaramiento, rastreo de ubicación, trampas de información, denegación de servicio, secuestro de nanodispositivos, agujero de gusano, ataque de intermediario MITM , malware, spam, sybil, suplantación de identidad,

En este contexto, es en el que se encuentra el hallazgo de los circuitos de un nanorouter en las muestras de la vacuna de Pfizer, que es una pieza clave en toda la investigación que se está realizando y que confirmaría la instalación de un hardware en el cuerpo de personas inoculadas, sin su consentimiento informado, que ejecuta procesos de recolección e interacción que están completamente fuera de su control.

Nanoenrutadores QCA

The discovered circuit, see figure 3, corresponds to the field of quantum dot cellular automata, also known as QCA (Quantum Cellular Automata), characterized by its nanometric scale and a very low energy consumption, as an alternative for the replacement of technology based on transistors. This is how it is defined by the work of (Sardinha, L.H .; Costa, A.M .; Neto, O.P.V .; Vieira, L.F .; Vieira, M.A. 2013) from which the scheme of said circuit was obtained. The nanorouter referred by the researchers is characterized by an ultra-low consumption factor, high processing speed (its frequency clock operates in a range of 1-2 THz), which is consistent with the power conditions and data transfer requirements. , in the context of nanocommunication networks for the human body described by (Pierobon, M .; Jornet, JM; Akkari, N .; Almasri, S .; Akyildiz, IF 2014).

Fig. 3. Circuito de puntos cuánticos de grafeno en células QCA. Diagrama de circuito de (Sardinha, LH.; Costa, AM.; Neto, OPV.; Vieira, LF.; Vieira, MA 2013) observado en una muestra de vacuna Pfizer.

De acuerdo con las explicaciones del trabajo de (Sardinha, LH; Costa, AM; Neto, OPV; Vieira, LF; Vieira, MA 2013), se distingue el concepto de punto cuántico y celda de punto cuántico, ver figura 4. La celda QCA Está formado por cuatro puntos cuánticos cuya polarización es variable. Esto hace posible distinguir el código binario de 0 y 1 en función de la carga positiva o negativa de los puntos cuánticos. En palabras de los autores se explica de la siguiente manera “Las unidades básicas de los circuitos QCA son celdas hechas de puntos cuánticos. Un punto, en este contexto, es simplemente una región donde se puede ubicar o no una carga eléctrica. Una celda QCA tiene cuatro puntos cuánticos ubicados en las esquinas Cada celda tiene dos electrones libres y en movimiento que pueden hacer un túnel entre los puntos cuánticos.

Fig. 4. Esquema de una celda QCA formada por cuatro puntos cuánticos (que pueden ser grafeno, entre otros materiales). Tenga en cuenta el gran parecido con los memristores, de hecho, los QCA y los memristores son transistores. (Sardinha, LH .; Costa, AM .; Neto, OPV .; Vieira, LF .; Vieira, MA 2013 | Strukov, DB .; Snider, GS .; Stewart, DR .; Williams, RS 2009)

Cuando se combinan las celdas QCA se crean cables y circuitos, con una gran variedad de formas, esquemas y aplicaciones, como se puede apreciar en la figura 5, donde se observan inversores, cruces y compuertas lógicas, abordadas también por otros autores como ( Xia, Y.; Qiu, K. 2008). Esto da lugar a estructuras más complejas, que permiten reproducir los esquemas electrónicos de los transistores, procesadores, transceptores, multiplexores, demultiplexores y en consecuencia de cualquier enrutador.

Fig. 5. Los QCA pueden formar varios tipos de circuitos, por ejemplo puertas lógicas, cruces de cables, inversores o cables. (Sardinha, LH.; Costa, AM.; Neto, OPV.; Vieira, LF.; Vieira, MA 2013)

Es importante explicar que los circuitos basados ​​en celdas QCA pueden operar en varias capas superpuestas, lo que permite que una estructura 3D (tridimensional) cree una electrónica mucho más compleja y comprimida, ver figura 6.

Fig. 6. Según (Sardinha, LH .; Costa, AM .; Neto, OPV .; Vieira, LF .; Vieira, MA 2013) se pueden construir circuitos más complejos anexando varias capas superpuestas. Esto se identifica con el símbolo de un círculo en el diseño. También hay tres ilustraciones artísticas que representan varios niveles de circuitos (elaboración propia).

Para desarrollar un nanorouter, según los investigadores (Sardinha, LH; Costa, AM; Neto, OPV; Vieira, LF; Vieira, MA 2013), se necesitan varias estructuras de circuitos, específicamente, cruces de cables (que forman puertas lógicas), demultiplexores (demux) y convertidores de paralelo a serie, consulte la figura X. «Demux» son dispositivos electrónicos capaces de recibir una señal en el QCA de entrada y enviarla a una de varias líneas de salida disponibles. (salida), que permite enrutar la señal para su posterior procesamiento. El convertidor paralelo a serie es un circuito capaz de tomar varios conjuntos de datos en una entrada (entrada), transportarlos a través de diferentes cables QCA y transmitirlos en diferentes momentos de tiempo a través de los cables de salida (salida). Esto sería muy, el componente notado en las muestras de vacunas,

Fig. 7. Detalles del circuito para convertir señales TS-OOK en serie a una salida paralela, confirmando una de las tareas típicas de un enrutador. (Sardinha, LH.; Costa, AM.; Neto, OPV.; Vieira, LF.; Vieira, MA 2013)

Otro aspecto relevante del trabajo de (Sardinha, LH; Costa, AM; Neto, OPV; Vieira, LF; Vieira, MA 2013) es la demostración del funcionamiento del circuito, donde la recepción de una señal TS-OOK y su conversión a código binario, ver figura 8. Una vez obtenido el código binario, el circuito «demux» se encarga de generar los paquetes de datos, según la estructura del protocolo de comunicaciones correspondiente.

Fig. 8. Las pruebas del circuito demux, ya observadas en la figura 7, proporcionan la prueba de cómo las señales TS-OOK son interpretadas y convertidas a código binario, para finalmente generar los paquetes de datos del protocolo de nanocomunicaciones correspondiente. (Sardinha, LH.; Costa, AM.; Neto, OPV.; Vieira, LF.; Vieira, MA 2013)

Todo lo explicado por (Sardinha, LH; Costa, AM; Neto, OPV; Vieira, LF; Vieira, MA 2013) también es corroborado por (Das, B .; Das, JC; De, D .; Paul, AK 2017) En en cuya investigación se observan diseños de circuitos QCA para demux y nanorouters, con esquemas muy similares a los ya presentados, lo que confirma la búsqueda de soluciones para el problema de transmisión y procesamiento simple de señales y datos a escala nano, a fin de para hacer efectivas las redes de nanocomunicaciones.

Finalmente, aunque ya se puede deducir de la naturaleza, características y propiedades de los circuitos de celdas QCA, hay que destacar el concepto de velocidad de reloj. De hecho, es interesante la capacidad de estos componentes electrónicos para funcionar de forma casi autónoma, sin necesidad de un procesador dedicado. Esto se debe a que los cables de celdas QCA pueden medir el tiempo de transferencia de las señales entre las diferentes celdas, en lo que se denomina “zonas de reloj”, ver figura 9 y las siguientes investigaciones (Sadeghi, M.; Navi, K.; Dolatshahi, M 2020 | Laajimi, R .; Niu, M. 2018 | Reis, DA; Torres, FS 2016 | Mohammadyan, S .; Angizi, S .; Navi, K. (2015) Este efecto permite la transmisión de señales a través del circuito, pero también permite crear una frecuencia de reloj, que es su propia velocidad de proceso.

Fig. 9. El nanorouter no requiere de un procesador independiente, pues las celdas QCA organizadas en los cables del circuito ya realizan esta función debido a las propiedades superconductoras y de polarización de los puntos cuánticos, lo que permite inferir una velocidad de reloj por fases o zonas. física de circuitos (Sardinha, LH .; Costa, AM .; Neto, OPV .; Vieira, LF .; Vieira, MA 2013 | Sadeghi, M .; Navi, K .; Dolatshahi, M. 2020)

Circuito de autoensamblaje

Aunque parezca imposible, el autoensamblaje de circuitos es una posibilidad a considerar en la hipótesis que se ha explicado. Según (Huang, J .; Momenzadeh, M .; Lombardi, F. 2007) «Los desarrollos recientes en la fabricación de QCA (que involucran implementaciones moleculares) han cambiado sustancialmente la naturaleza del procesamiento. En tamaños de características muy pequeños, se anticipa el autoensamblaje o deposición de celdas a gran escala en sustratos aislados. En estas implementaciones, las celdas QCA (cada una compuesta por dos dipolos) se disponen en pistas paralelas en forma de V. Las celdas QCA se organizan en un patrón denso y el cálculo se produce entre adyacentes. células Estas técnicas de fabricación son muy adecuadas para la implementación molecular «. Sin embargo, también hay otros métodos,

Fig. 10. Autoensamblaje de un circuito con puntos cuánticos a partir de un patrón de ADN. Las líneas de los cables del circuito son muy similares a las observadas en la muestra de vacuna, ver figuras 2 y 3. (Hu, W .; Sarveswaran, K .; Lieberman, M .; Bernstein, GH 2005)

Según (Hu, W .; Sarveswaran, K .; Lieberman, M .; Bernstein, GH 2005) «Se han sintetizado y caracterizado con éxito balsas de ADN de cuatro mosaicos mediante el método de electroforesis en gel en nuestro trabajo anterior» según el trabajo de (Sarveswaran, K. 2004). Esto encaja con la muy posible existencia de un gel/hidrogel en la composición de la vacuna, tras el análisis micro-Raman del médico (Campra, P. 2021) en el que se obtuvieron picos con valores cercanos a 1450, que podrían corresponder a PVA, PQT-12, poliolefina, poliacrilamida polipirrol , todos ellos componentes reconocidos en la literatura científica como geles y derivados. Por otro lado, se alude explícitamente al método de electroforesis, o lo que es lo mismo, al proceso de polarización eléctrica que da lugar a la teslaforesis, sobre nanotubos de carbono, grafeno, puntos cuánticos y otros semiconductores, tal y como se ha descrito (Bornhoeft, LR; Castillo, AC; Smalley, PR; Kittrell, C.; James, DK; Brinson, BE; Cherukuri, P. 2016) en su investigación. Esto confirmaría que la teslaforesis juega un papel fundamental en la composición de los circuitos, junto con los patrones de ADN. Si esto se confirma, significaría que los circuitos podrían autoensamblarse en presencia de campos eléctricos o incluso la recepción de ondas electromagnéticas (microondas EM). El estudio de (Pillers, M.; Goss, V.; Lieberman, M.

Fig. 11. Los avances en el campo del autoensamblaje de puntos cuánticos y células QCA se pueden observar en la literatura científica utilizando el método de la plantilla de ADN para marcar el orden de construcción y la electroforesis para iniciar o desencadenar el proceso en los materiales de la solución. . (Pillers, M.; Goss, V.; Lieberman, M. 2014)

Nano-emisores plasmónicos

Otro tema que requiere una explicación en el descubrimiento del circuito de un nanorouter, en la muestra de la vacuna, es su ubicación en lo que parece ser un cristal cuadrangular. Aunque podría pensarse que se trata de un formulario generado aleatoriamente, la revisión bibliográfica revela y justifica este tipo de formulario que sirve de marco para este tipo de circuitos. En realidad se trata de un «nanoemisor plasmónico», es decir, correspondería a una nanoantena (monocristal) de forma cúbica y tamaño variable en la escala nano-micrométrica, que puede emitir, recibir o repetir señales. Esto es posible gracias a la propiedad de activación de plasmones de su superficie (la del cubo de nanoemisores) que se excita localmente para generar una señal oscilatoria, como explican (Ge, D .; Marguet, S .; Issa, A .; Jradi, S .; Nguyen, TH; Nahra, M.; Bachelot, R. 2020), ver figura 12. Esto concuerda con el tipo de señales TS-OOK, las cuales se transmiten a través de la red de nanocomunicación intracorporal, siendo requisito indispensable para un nano-router, contar con un método para capturarlas . En otras palabras, el cubo cristalino actúa como un transceptor para el nanorouter, debido a sus propiedades especiales, derivadas de la física del plasmón. Esto se corrobora cuando se consulta la literatura científica sobre nanoredes electromagnéticas para el cuerpo humano (Balghusoon, AO; Mahfoudh, S. 2020), los protocolos MAC aplicados al caso (Jornet, JM; Pujol, JC; Pareta, JS 2012 ), los métodos para la depuración de errores en las señales (Jornet, JM; Pierobon, M .; Akyildiz, IF 2008), o la modulación de pulsos en femtosegundos en la banda de terahercios para redes de nanocomunicaciones (Jornet, JM; Akyildiz, IF 2014), la parametrización de nanoredes para su funcionamiento perpetuo (Yao, XW; Wang, WL; Yang, SH 2015 ), el desempeño en la modulación de señales inalámbricas para nano-redes (Zarepour, E .; Hassan, M .; Chou, CT; Bayat, S. 2015). En todos los casos, los nanotransceptores son imprescindibles para poder recibir o emitir una señal TS-OOK.

Fig. 12. Los cristales de escala nano-micrométrica pueden desempeñar el papel de antena o transceptor, lo que permite imaginar que encontrar el circuito en una estructura cuadrangular no es producto del azar. (Ge, D .; Marguet, S .; Issa, A .; Jradi, S .; Nguyen, TH .; Nahra, M .; Bachelot, R. 2020)

Los nanoemisores plasmónicos pueden adquirir forma de cubo, que sería el caso observado en la muestra de vacuna, pero también forma esférica y discoidal, pudiendo autoensamblarse, para formar nano-microestructuras de mayor tamaño (Devaraj, V.; Lee, JM ; Kim , YJ; Jeong, H .; Oh, JW 2021). Entre los materiales con los que se podría producir este nanoemisor plasmónico se encuentran el oro, la plata, las perovskitas y el grafeno, ver (Oh, DK; Jeong, H.; Kim, J.; Kim, Y.; Kim, I.; Ok, JG; Rho, J. 2021 | Hamedi, HR; Paspalakis, E.; Yannopapas, V. 2021 | Gritsienko, AV; Kurochkin, NS; Lega, PV; Orlov, AP; Ilin, AS; Eliseev, SP; Vitukhnovsky, AG 2021 | Pierini, S. 2021), aunque es probable que se puedan utilizar muchos otros.

Memoria CAM y TCAM para MAC e IP

Si se considera la presencia de nanorouters en las vacunas, se podría confirmar la hipótesis de la existencia de una o más direcciones MAC (fijas o dinámicas), que podrían ser emitidas desde personas vacunadas o a través de algún otro dispositivo intermediario (por ejemplo, un teléfono móvil). . Este enfoque está en línea con lo ya explicado y evidenciado en esta publicación, pero también de acuerdo con publicaciones científicas sobre redes de nanocomunicación para el cuerpo humano. . Según (Abadal, S .; Liaskos, C .; Tsioliaridou, A .; Ioannidis, S .; Pitsillides, A .; Solé-Pareta, J .; Cabellos-Aparicio, A. 2017) estas direcciones MAC permiten la nano- La red puede transmitir y recibir datos, porque el individuo tiene un identificador único que le permite acceder al medio, es decir, Internet. De esta forma, el nano-router puede recibir las señales correspondientes a los datos de los nano-sensores y nano-nodos de la nano-red para transmitirlos al exterior del cuerpo, siempre que haya un dispositivo móvil cerca, que sirve de puerta de enlace a Internet. Por lo tanto, es factible la hipótesis de que se pueden observar las direcciones MAC de las personas vacunadas (mediante aplicaciones de rastreo de señal bluetooth), cuando existe algún tipo de interacción con el medio móvil que actúa como enlace. Esto no quiere decir que exista una comunicación permanente, por la necesidad de ahorrar y optimizar el consumo de energía (Mohrehkesh, S .; Weigle, MC 2014 | Mohrehkesh, S .; Weigle, MC; Das, SK 2015), lo que podría explicar la intermitencia en las comunicaciones, periodos de conexión e inactividad.

La novedad en el campo de las direcciones MAC, que viene junto a los circuitos QCA, con los que se pueden desarrollar nanorouters, es que también se pueden crear circuitos de memoria. Los mismos investigadores (Sardinha, LH; Silva, DS; Vieira, MA; Vieira, LF; Neto, OPV 2015) desarrollaron un nuevo tipo de memoria CAM que «a diferencia de la memoria de acceso aleatorio (RAM), que devuelve datos que se almacenan en el dirección dada. CAM, sin embargo, recibe los datos como entrada y regresa donde se pueden encontrar los datos. CAM es útil para muchas aplicaciones que necesitan búsquedas rápidas, como transformadas Hought, codificación Huffman, compresión Lempel. Ziv y conmutadores de red para mapear Direcciones MAC a direcciones IP y viceversa. CAM es más útil para crear tablas que busquen coincidencias exactas, como las tablas de direcciones MAC. «

Fig. 13. Circuitos de memoria para el almacenamiento de direcciones MAC e IP realizados con la misma tecnología QCA del nanorouter observado en las muestras de vacunas de Pfizer. (Sardinha, LH.; Silva, DS.; Vieira, MA.; Vieira, LF.; Neto, OPV 2015)

Además, (Sardinha, LH; Silva, DS; Vieira, MA; Vieira, LF; Neto, OPV 2015) también desarrollaron la memoria TCAM, que es un tipo especial de memoria CAM que sería útil para «crear tablas para buscar coincidencias como tablas de enrutamiento de IP organizadas por prefijos de IP. Para reducir la latencia y hacer que la comunicación sea más rápida, los enrutadores usan TCAM «. Esta afirmación afecta claramente su uso en nano-enrutadores para poder transmitir los datos obtenidos en la nano-red a un servidor destinatario específico accesible en Internet. En otras palabras, los datos recolectados por la nano-red deberían ser almacenados/registrados en una base de datos, de la cual el receptor de la vacuna no tendría conocimiento de su existencia, de la cual no fue informado, y en el cual se desconoce qué se utiliza la información.

Bibliografia

Akyildiz, SI; Jornet, JM (2010). Redes de nanosensores inalámbricos electromagnéticos = Redes de nanosensores inalámbricos electromagnéticos. Nano Communication Networks, 1(1), pp. 3-19. https://doi.org/10.1016/j.nancom.2010.04.001

Al-Turjman, F. (2020). Inteligencia y seguridad en un gran IoNT orientado a 5G: descripción general = Intelligence and security in big 5G-oriented IoNT: An Overview. Sistemas informáticos de generación futura, 102, págs. 357-368. https://doi.org/10.1016/j.future.2019.08.009

Balasubramaniam, S.; Boyle, NT; Della-Chiesa, A.; Walsh, F.; Mardinoglu, A.; Botvich, D.; Prina-Mello, A. (2011). Desarrollo de redes neuronales artificiales para la comunicación molecular = Desarrollo de redes neuronales artificiales para la comunicación molecular. Nano Communication Networks, 2(2-3), pp. 150-160. https://doi.org/10.1016/j.nancom.2011.05.004

Balghusoon, AO; Mahfudh, S. (2020). Protocolos de enrutamiento para redes inalámbricas de nanosensores e Internet de las nano cosas: una revisión completa = Routing Protocols for Wireless Nanosensor Networks and Internet of Nano Things: A Comprehensive Survey. Acceso IEEE, 8, págs. 200724-200748. https://doi.org/10.1109/ACCESO.2020.3035646

Beyene, AG; Delevich, K.; Del Bonis-O’Donnell, JT; Piekarski, DJ; Lin, WC; Tomás, AW; Landry, parlamentario (2019). Obtención de imágenes de la liberación de dopamina estriatal utilizando un nanosensor de catecolamina fluorescente de infrarrojo cercano no codificado genéticamente Avances científicos, 5(7), eaaw3108. https://doi.org/10.1126/sciadv.aaw3108

Bornhoeft, LR; Castillo, AC; Smalley, relaciones públicas; Kittrell, C.; James, DK; Brinson, BE; Cherukuri, P. (2016). Teslaforesis de nanotubos de carbono = Teslaforesis de nanotubos de carbono. ACS nano, 10(4), págs. 4873-4881. https://doi.org/10.1021/acsnano.6b02313

Bouchedjera, IA; Aliouat, Z.; Louail, L. (2020). EECORONA: Sistema de Coordinación y Enrutamiento de Eficiencia Energética para Nanoredes = EECORONA: Energy Efficiency Coordinate and Routing System for Nanonetworks. En: Simposio Internacional de Modelado e Implementación de Sistemas Complejos. Cham. págs. 18-32. https://doi.org/10.1007/978-3-030-58861-8_2

Bouchedjera, IA; Louail, L.; Aliouat, Z.; Harous, S. (2020). DCCORONA: Sistema distribuidor de enrutamiento y coordenadas basado en clústeres para nanorredes = DCCORONA: Distributed Cluster-based Coordinate and Routing System for Nanonetworks. En: 2020 11ª Conferencia Anual de Computación Ubicua, Electrónica y Comunicaciones Móviles del IEEE (UEMCON). IEEE. págs. 0939-0945. https://doi.org/10.1109/UEMCON51285.2020.9298084

Campra, P. (2021a). Observaciones de posible microbiótica en vacunas COVID RNAm Versión 1. http://dx.doi.org/10.13140/RG.2.2.13875.55840

Campra, P. (2021b). Detección de grafeno en vacunas COVID19 por espectroscopía Micro-RAMAN. https://www.researchgate.net/publication/355684360_Deteccion_de_grafeno_en_vacunas_COVID19_por_espectroscopia_Micro-RAMAN

Campra, P. (2021c). MICROESTRUCTURAS EN VACUNAS COVID: ¿cristales inorgánicos o Red de Nanosensores Inalámbricos? https://www.researchgate.net/publication/356507702_MICROSTRUCTURES_IN_COVID_VACCINES_inorganic_crystals_or_Wireless_Nanosensors_Network

Chopra, N.; Phipot, M.; Alomainy, A.; Abbasi, QH; Qaraqe, K.; Shubair, RM (2016). Caracterización en el dominio del tiempo de THz del tejido de la piel humana para la comunicación nanoelectromagnética. En: 2016 16º Simposio Mediterráneo de Microondas (MMS) (págs. 1-3). IEEE. https://doi.org/10.1109/MMS.2016.7803787

Da-Costa, MR; Kibis, VO; Portnoi, ME (2009). Nanotubos de carbono como base para emisores y detectores de terahercios = Nanotubos de carbono como base para emisores y detectores de terahercios. Revista de microelectrónica, 40(4-5), págs. 776-778. https://doi.org/10.1016/j.mejo.2008.11.016

Das, B.; Das, JC; De, D.; Pablo, Alaska (2017). Diseño de nanoenrutador para nanocomunicación en autómatas celulares cuánticos de una sola capa =Nano-Router Design for Nano-Communication in Single Layer Quantum Cellular Automata. En: Conferencia Internacional sobre Inteligencia Computacional, Comunicaciones y Business Analytics (pp. 121-133). Springer, Singapur. https://doi.org/10.1007/978-981-10-6430-2_11

Demoustier, S.; Minoux, E.; Le Baillif, M.; Carlos, M.; Ziaei, A. (2008). Revisión de dos aplicaciones de microondas de nanotubos de carbono: nano antenas y nanointerruptores = Revue d’applications des nanotubes de carbone aux micro-ondes: nano-antennes et nano-conmutateurs = Revisión de dos aplicaciones de microondas de nanotubos de carbono: nano-antenas y nanointerruptores. Comptes Rendus Physique, 9(1), págs. 53-66. https://doi.org/10.1016/j.crhy.2008.01.001

Devaraj, V.; Lee, JM; Kim, YJ; Jung, H.; Oh, JW (2021). [Preimpresión]. Diseño de nanoestructuras plasmónicas autoensambladas eficientes a partir de nanopartículas de forma esférica. Revista Internacional de Ciencias Moleculares. https://www.preprints.org/manuscript/202109.0225/v1

Dhoutaut, D.; Arrabal, T.; Dedu, E. (2018). Bit Simulator, un simulador de nanorredes electromagnéticas = Bit simulator, un simulador de nanoredes electromagnéticas. En: Actas de la 5ª Conferencia Internacional ACM sobre Computación y Comunicación a Nanoescala (págs. 1-6). https://doi.org/10.1145/3233188.3233205

Fabbro, A.; Cellot, G.; Prato, M.; Ballerini, L. (2011). Interconexión de neuronas con nanotubos de carbono: (re) ingeniería de la señalización neuronal = Interfaces de neuronas con nanotubos de carbono: (re) ingeniería de señalización neuronal. Progreso en la investigación del cerebro, 194, pp. 241-252. https://doi.org/10.1016/B978-0-444-53815-4.00003-0

Ferjani, H.; Touatí, H. (2019). Comunicación de datos en nano-redes electromagnéticas para aplicaciones sanitarias = Comunicación de datos en nano-redes electromagnéticas para aplicaciones sanitarias. En: Conferencia internacional sobre redes móviles, seguras y programables (págs. 140-152). Springer, Cham. https://doi.org/10.1007/978-3-030-22885-9_13

Ge, D.; Margarita, S.; Isa, A.; Jradi, S.; Nguyen, TH; Nahra, M.; Bachelot, R. (2020). Nanoemisores plasmónicos híbridos con posicionamiento controlado de un único emisor cuántico en el campo de excitación local Comunicaciones de la naturaleza, 11(1), pp1-11. https://doi.org/10.1038/s41467-020-17248-8

Gritsienko, AV; Kurochkin, NS; Liga, PV; Orlov, AP; Ilín, AS; Eliseev, SP; Vitukhnovsky, AG (2021). Propiedades ópticas de la nueva nanoantena híbrida en cavidad submicrónica En: Journal of Physics: Conference Series (Vol. 2015, No. 1, p. 012052). Publicación IOP. https://doi.org/10.1088/1742-6596/2015/1/012052

Hamedi, HR; Paspalakis, E.; Yannopapas, V. (2021). Control efectivo de la biestabilidad óptica de un emisor cuántico de tres niveles cerca de una metauperficie plasmónica nanoestructurada. En: Photonics (Vol. 8, No. 7, p. 285). Instituto Multidisciplinario de Edición Digital. https://doi.org/10.3390/photonics8070285

Hu, W.; Sarveswaran, K.; Liberman, M.; Bernstein, GH (2005). Litografía por haz de electrones de alta resolución y nanopatrones de ADN para QCA molecular. IEEE Transactions on Nanotechnology, 4(3), pp. 312-316. https://doi.org/10.1109/TNANO.2005.847034

Huang, G.; Huang, H. (2018). Aplicación de dextrano como portadores de fármacos a nanoescala = Aplicación de dextrano como portadores de fármacos a nanoescala. Nanomedicina, 13(24), págs. 3149-3158. https://doi.org/10.2217/nnm-2018-0331

Huang, J.; Momenzadeh, M.; Lombardi, F. (2007). Diseño de circuitos secuenciales por autómatas celulares de puntos cuánticos = Diseño de circuitos secuenciales por autómatas celulares de puntos cuánticos. Revista de microelectrónica, 38(4-5), págs. 525-537. https://doi.org/10.1016/j.mejo.2007.03.013

Huang, J.; Xie, G.; Kuang, R.; Deng, F.; Zhang, Y. (2021). Circuito de código Hamming basado en QCA para redes de nanocomunicación = Circuito de código Hamming basado en QCA para redes de nanocomunicación. Microprocesadores y Microsistemas, 84, 104237. https://doi.org/10.1016/j.micpro.2021.104237

Juan, AA; Subramaniano, AP; Vellayappan, MV; Balaji, A.; Mohandas, H.; Jaganathan, SK (2015). Los nanotubos de carbono y el grafeno como candidatos emergentes en la neurorregeneración y la administración de neurofármacos. Revista internacional de nanomedicina, 10, 4267. https://dx.doi.org/10.2147%2FIJN.S83777

Jornet, JM; Akyildiz, IF (2014). Modulación basada en pulsos de femtosegundo largo para comunicación en banda de terahercios en nanorredes IEEE Transactions on Communications, 62(5), págs. 1742-1754. https://doi.org/10.1109/TCOMM.2014.033014.130403

Jornet, JM; Pierobón, M.; Akyildiz, IF (2008). Redes de nanocomunicación = Nano Redes de Comunicación. Networks (Elsevier), 52, págs. 2260-2279. http://dx.doi.org/10.1016/j.nancom.2014.04.001

Jornet, JM; Pujol, JC; Pareta, JS (2012). PHLAME: un protocolo MAC consciente de la capa física para nanoredes electromagnéticas en la banda de terahercios = Phlame: un protocolo mac consciente de la capa física para nanoredes electromagnéticas en la banda de terahercios. Nano Communication Networks, 3(1), pp. 74-81. https://doi.org/10.1016/j.nancom.2012.01.006

Kumar, MR (2019). Una nano-antena compacta basada en grafeno para la comunicación en nano-redes = A Compact Graphene Based Nano-Antenna for Communication in Nano-Network. Revista del Instituto de Electrónica e Informática, 1(1), pp. 17-27. https://doi.org/10.33969/JIEC.2019.11003

Laajimi, R.; Niu, M. (2018). Nanoarquitectura de autómatas celulares de puntos cuánticos (QCA) que utilizan áreas pequeñas para circuitos digitales = Nanoarchitecture of Quantum-Dot Cellular Automata (QCA) Using Small Area for Digital Circuits. Circuitos electrónicos avanzados: principios, arquitecturas y aplicaciones en tecnologías emergentes, págs. 67-84. https://www.intechopen.com/chapters/58619

Lee, SJ; Jung, C.; Choi, K.; Kim, S. (2015). Diseño de redes inalámbricas de nanosensores para aplicaciones intracuerpo = Diseño de redes inalámbricas de nanosensores para aplicación intracorporal. Revista internacional de redes de sensores distribuidos, 11(7), 176761. https://doi.org/10.1155/2015/176761

Lu, J.; Sí, PSE; Gan, CK; Wu, P.; Loh, KP (2011). Transformando moléculas C60 en puntos cuánticos de grafeno = Transformando moléculas C60 en puntos cuánticos de grafeno. Nature nanotechnology, 6(4), pp. 247-252. https://doi.org/10.1038/nnano.2011.30

Massicotte, M.; Yu, V.; Whiteway, E.; Vatnik, D.; Hilke, M. (2013). Efecto Hall cuántico en el grafeno fractal: crecimiento y propiedades de los grafloconos = Quantum Hall effect in fractal graphene: growth and properties of graphlocons. Nanotecnología, 24(32), 325601. https://doi.org/10.1088/0957-4484/24/32/325601

Mitragotri, S.; Anderson, DG; Chen, X.; Chow, EK; Ho, D.; Kabanov, AV; Xu, C. (2015). Acelerando la traducción de nanomateriales en biomedicina = Acelerando la traducción de nanomateriales en biomedicina. ACS nano, 9(7), págs. 6644-6654. https://doi.org/10.1021/acsnano.5b03569

Mohammadyan, S.; Angizi, S.; Navi, K. (2015). Nueva celda sumadora completa QCA de una sola capa basada en el modelo de retroalimentación Revista internacional de arquitectura de sistemas de alto rendimiento, 5(4), pp. 202-208. https://doi.org/10.1504/IJHPSA.2015.072847

Mohrehkesh, S.; Weigle, MC (2014). Optimización del consumo de energía en nanorredes de banda de terahercios = Optimización del consumo de energía en nanoredes de banda de terahercios. IEEE Journal on Selected Areas in Communications, 32(12), pp. 2432-2441. https://doi.org/10.1109/JSAC.2014.2367668

Mohrehkesh, S.; Weigle, MC; Das, SK (2015). DRIH-MAC: una MAC de recolección iniciada por un receptor distribuidor para nanorredes IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 1(1), pp. 97-110. https://doi.org/10.1109/TMBMC.2015.2465519

Oh, no sé; Jung, H.; Kim, J.; Kim, Y.; Kim, I.; Bien, JG; Rho, J. (2021). Enfoques de nanofabricación de arriba hacia abajo hacia estructuras de escala nanométrica de un solo dígito Journal of Mechanical Science and Technology, págs. 1-23. https://doi.org/10.1007/s12206-021-0243-7

Patriarca, T.; Cho, JR; Merten, K.; Howe, MW; Marley, A.; Xiong, WH; Tian, ​​L. (2018). Imágenes neuronales ultrarrápidas de la dinámica de la dopamina con sensores codificados genéticamente diseñados Ciencia, 360 (6396). https://doi.org/10.1126/science.aat4422

Patriarca, T.; Mohebi, A.; Sol, J.; Marley, A.; Liang, R.; Dong, C.; Tian, ​​L. (2020). Una paleta ampliada de sensores de dopamina para imágenes multiplex in vivo Nature Methods, 17(11), págs. 1147-1155. https://doi.org/10.1038/s41592-020-0936-3

Pierini, S. (2021). [Preimpresión]. Estudio experimental de nanocristales de perovskita como fuentes de fotón único para fotónica cuántica integrada = Estudio experimental de nanocristales de perovskita como fuentes de fotón único para fotónica cuántica integrada. Arxiv. https://arxiv.org/pdf/2105.14245.pdf

Pierobón, M.; Jornet, JM; Akkari, N.; Almasri, S.; Akyildiz, IF (2014). Un marco de enrutamiento para redes de nanosensores inalámbricos de recolección de energía en la banda de terahercios. Redes inalámbricas, 20(5), pp. 1169-1183. https://doi.org/10.1007/s11276-013-0665-y

Pillers, M.; Goss, V.; Liberman, M. (2014). Litografía por haz de electrones y despegue molecular para la fijación dirigida de nanoestructuras de ADN sobre silicio: de arriba hacia abajo se encuentra con de abajo hacia arriba se encuentra de abajo hacia arriba. Cuentas de investigación química, 47(6), pp. 1759-1767. https://doi.org/10.1021/ar500001e

Reyes, DA; Torres, FS (2016). Un simulador de defectos para el análisis de robustez de circuitos QCA = A Defects Simulator for Robustness Analysis of QCA Circuits. Journal of Integrated Circuits and Systems, 11(2), pp. 86-96. https://doi.org/10.29292/jics.v11i2.433

Sadeghi, M.; Navi, K.; Dolatshahi, M. (2020). Nuevos diseños eficientes de sumador completo y restador completo en autómatas celulares cuánticos = Novedosos diseños eficientes de sumador completo y restador completo en autómatas celulares cuánticos. The Journal of Supercomputing, 76(3), págs. 2191-2205. https://doi.org/10.1007/s11227-019-03073-4

Sardina, LH; Costa, AM; Neto, OPV; Vieira, LF; Vieira, MA (2013). NanoRouter: un diseño de autómatas celulares de puntos cuánticos = Nanorouter: un diseño de autómatas celulares de puntos cuánticos. IEEE Journal on Selected Areas in Communications, 31(12), pp. 825-834. https://doi.org/10.1109/JSAC.2013.SUP2.12130015

Sardina, LH; Silva, DS; Vieira, MA; Vieira, LF; Neto, OPV (2015). TCAM / CAM-QCA: Memoria direccionable de contenido (ternario) usando autómatas celulares de punto cuántico = Tcam/cam-qca:(ternaria) memoria direccionable de contenido usando autómatas celulares de puntos cuánticos. Revista de microelectrónica, 46(7), págs. 563-571. https://doi.org/10.1016/j.mejo.2015.03.020

Sarveswaran, K. (2004). [Documento reservado]. Autoensamblaje y modelado litográfico de balsas de ADN.DARPA Conf. Fundamentos de la nanociencia: arquitecturas y dispositivos autoensamblados, Snowbird, UT. [Enlace no disponible]

Strukov, DB; Snider, GS; Stewart, DR; Williams, RS (2009). El memristor perdido, encontrado El memristor perdido encontrado. Naturaleza, 459(7250), 1154. https://doi.org/10.1038/nature06932

Sol, F.; Zhou, J.; Dai, B.; Qian, T.; Zeng, J.; Li, X.; Li, Y. (2020). Sensores GRAB de próxima generación para monitorear la actividad dopaminérgica in vivo = Sensores GRAB de próxima generación para monitorear la actividad dopaminérgica in vivo. Nature Methods, 17(11), págs. 1156-1166. https://doi.org/10.1038/s41592-020-00981-9

Suzuki, J.; Budman, H.; Carr, TA; De Blois, JH (2013). Un marco de simulación para la comunicación molecular basada en neuronas Procedia Informática, 24, pp. 103-113. https://doi.org/10.1016/j.procs.2013.10.032

Tsioliaridou, A.; Liaskos, C.; Ioannidis, S.; Pitsillides, A. (2015). CORONA: un sistema de coordenadas y enrutamiento para nanorredes = CORONA: A Coordinate and Routing system for Nanonetworks. En: Actas de la segunda conferencia internacional anual sobre computación y comunicación a nanoescala. págs. 1-6. https://doi.org/10.1145/2800795.2800809 https://sci-hub.mksa.top/10.1145/2800795.2800809

Vassiliou, V. (2011). Problemas de seguridad en redes de comunicación a nanoescala = Problemas de seguridad en redes de comunicación a nanoescala. 3ra Cumbre de NaNoNetworking, pp. 1-53. http://www.n3cat.upc.edu/n3summit2011/presentations/Security_Issues_in_Nanoscale_Communication_Networks.pdf

Vavouris, AK; Dervisi, FD; Papanikolaou, VK; Karagiannidis, GK (2018). Un esquema de modulación energéticamente eficiente para nanocomunicaciones centradas en el cuerpo en la banda THz = En: 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST) (págs. 1-4). IEEE. https://doi.org/10.1109/MOCAST.2018.8376563

Wang, ZF; Liu, F. (2011). Puntos de cuánticos de grafeno como bloques de construcción para autómatas celulares cuánticos Nanoscale, 3(10), págs. 4201-4205. https://doi.org/10.1039/C1NR10489F

Wang, WL; Wang, CC; Yao, XW (2019). Protocolo MAC basado en autoasignación de ranuras para nano-redes de recolección de energía Sensores, 19(21), 4646. https://doi.org/10.3390/s19214646

Wang, Y.; Wu, Q.; Shi, W.; él, X.; Sol, X.; Gui, T. (2008). Propiedades de radiación de la antena de nanotubos de carbono en el rango de terahercios / infrarrojos = Radiation properties of carbon nanotubes antenna at terahertz/infrared range. Revista internacional de ondas infrarrojas y milimétricas, 29(1), pp. 35-42. https://doi.org/10.1007/s10762-007-9306-9

Xia, Y.; Qiu, K. (2008). Diseño y aplicación de puerta lógica universal basada en autómatas celulares de puntos cuánticos En: 2008 11th IEEE International Conference on Communication Technology (págs. 335-338). IEEE. https://doi.org/10.1109/ICCT.2008.4716260 https://sci-hub.mksa.top/10.1109/ICCT.2008.4716260

Yao, XW; Wang, WL; Yang, SH (2015). Optimización de parámetros conjuntos para redes perpetuas y capacidad máxima de red IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 1(4), pp. 321-330. https://doi.org/10.1109/TMBMC.2016.2564967

Yu, J.; Zhang, Y.; Yan, J.; Kahkoska, AR; Gu, Z. (2018). Avances en sistemas de administración de fármacos de circuito cerrado biorresponsivos. Revista internacional de productos farmacéuticos, 544(2), pp. 350-357. https://doi.org/10.1016/j.ijpharm.2017.11.064

Zarepour, E.; Hassan, M.; Chou, CT; Bayat, S. (2015). Análisis de rendimiento de esquemas de modulación sin portadora para redes inalámbricas de nanosensores En: 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO) (págs. 45-50). IEEE. https://doi.org/10.1109/NANO.2015.7388653

Zhang, R.; Yang, K.; Abbasi, QH; Karaqe, KA; Alomainy, A. (2017). Caracterización analítica de la nanored In-Vivo de Terahercios en presencia de interferencia basada en el esquema de comunicación TS-OOK Acceso IEEE, 5, págs. 10172-10181. https://doi.org/10.1109/ACCESO.2017.2713459

El cargo de Comandante y Jefe de las Fuerzas Aliadas de Europa Central de la OTAN fue ocupado ÚNICAMENTE por «antiguos» nazis durante 18 AÑOS CONTINUOS, de 1965 a 1983 

02.06.2022

EE.UU

walt garlington

La Organización del Tratado del Atlántico Norte (OTAN), la organización zombi con «muerte cerebral» que sobrevive décadas después del final de la Guerra Fría, continúa ejerciendo una enorme influencia sobre muchas naciones de Europa Occidental y América del Norte, gracias en gran medida a «bolsas de lleno de dinero’ con el que la ciudad de Washington compra su lealtad .

Como bien se puede imaginar, esta influencia es altamente negativa. Es producto y refuerza muchos de los males que han surgido en Occidente durante los últimos 1.200 años. El Sr. Christopher Black relata algo de esto :

‘La visión europea egocéntrica e ignorante de sí mismos como los seres superiores del mundo, que surgió de su ignorancia del mundo y del dogmatismo de la Iglesia Católica, y la posterior promoción por parte de los protestantes del individuo como lo más importante, en lugar de la sociedad colectiva, que negaba la identidad de cada uno con el todo y con la naturaleza, creó una sociedad que consideraba a los demás como ajenos a ellos, por lo que no eran de ellos, sino cosas para usar y explotar tal como ellos han usado y explotado el planeta como un todo.

‘La rápida expansión de la destrucción europea, desde la conquista de México y la masacre de millones allí hasta las subyugaciones y exterminios de pueblos de todo el norte, centro y sur de América, África, India, llegando a Asia, Australia y las islas de todo el mundo. mares, encabezados primero por España y Portugal, luego Gran Bretaña y Francia, los Países Bajos y otras naciones, desde 1500 hasta 1770, condujo a una nube de miseria que descendió sobre los pueblos que tuvieron la desgracia de tener algo que deseaban.

‘El proyecto colonial británico resultó en la creación de los Estados Unidos de América, fundados por colonos británicos que consideraban al individuo como supremo y las riquezas como su meta en la vida; quienes consideraban la vida humana como nada más que una herramienta de enriquecimiento o un impedimento a ser eliminado. Esta sociedad, tan pronto como fue creada, comenzó sus guerras de conquista y masacre en todo el continente y luego, en el siglo XIX, intentó tomar Canadá, luego México y otros estados regionales bajo su control.

Después de que la mayor parte del mundo que podía ser colonizado cayera bajo la dominación colonial con la toma de más colonias por parte de Gran Bretaña, Alemania, Francia y Bélgica desde África hasta Indochina, Estados Unidos se volvió contra sus potencias imperialistas rivales, siendo la primera España, cuyas colonias fueron tomadas por los EE. UU. en la Guerra Hispanoamericana de 1898 que se inició con un pretexto como suele ser el caso en las guerras estadounidenses.

Las tensiones de la competencia entre los EE. UU. y entre las potencias coloniales europeas en los albores del siglo XX llevaron a la Gran Guerra de 1914-18 en la que el imperialismo occidental alcanzó su apogeo cuando los EE. UU. emergieron como la más poderosa de las potencias coloniales imperialistas. mientras Gran Bretaña y Francia estaban en bancarrota, a pesar de que Gran Bretaña se hizo cargo de las colonias alemanas en África.

‘En la década de 1930, con la mayor parte del planeta ahora colonizado por estas potencias y con Japón emergiendo como una potencia colonial en Asia, con Italia tratando de recuperar el control sobre partes de África, y todos ellos teniendo que enfrentar la nueva realidad política del socialismo. con la creación de la Unión Soviética que bloqueó la capacidad del capital occidental para explotar Rusia y todas las tierras de Asia, se desató el descontento social como una depresión mundial.

‘Los mercados se saturaron por la sobreproducción, la producción y la distribución se desplomaron, el comunismo se convirtió en el defensor de los trabajadores y los oprimidos, amenazando el dominio del capital en todas partes. Se produjo una reacción violenta. Para el capital industrial-financiero de las potencias occidentales, la guerra era la única salida a su dilema, en su lógica retorcida, destrucción para reconstruir, asesinato masivo de millones para salvar una sociedad degradada. El fascismo surgió del descontento como un medio para canalizar ese descontento contra las fuerzas progresistas del pueblo y en apoyo del capital y cualquier y toda violencia era aceptable para lograr sus fines. La moralidad es algo que viene de dentro; las acciones siguen al carácter. El oeste combinado, toda su sociedad, reveló en las décadas de 1930 y 1940 que no tiene moralidad y que nunca la tendrá.

El fascismo/nazismo por el que supuestamente los aliados estaban luchando para derrotar en la Segunda Guerra Mundial yace en el corazón del cadáver pútrido y no-muerto de la OTAN. Las conexiones íntimas entre los dos se presentan en un ensayo de la señorita Cynthia Chung :

Adolf Heusinger , quien se desempeñó como Jefe de Operaciones dentro del estado mayor general del Alto Mando del Ejército Alemán en las Fuerzas Armadas alemanas nazis de 1938 a 1944. Luego fue nombrado Jefe interino del Estado Mayor General de los nazis.

‘Heusinger, como Gehlen, nunca sería juzgado en los juicios de Nuremberg. En cambio, se le dio el control sobre el ejército de Alemania Occidental recién establecido, como general de la Bundeswehr de 1957 a 1961. Luego se convirtió en presidente del Comité Militar de la OTAN de 1961 a 1964. Esto se superpuso con el período de mayores intentos de asesinato contra De Gaulle, en el que estuvo implicada la Operación Gladio de la OTAN ( ver Parte 3 ).

Hans Speidel , un general nazi, fue uno de los principales líderes militares de Alemania Occidental durante los inicios de la Guerra Fría. Fue uno de los principales fundadores de la Bundeswehr . Fue una figura importante en el rearme alemán y supervisó la integración de la Bundeswehr en la OTAN. (10) Se convirtió en asesor militar del canciller Konrad Adenauer y comandante supremo de la fuerza terrestre de la OTAN en Europa Central entre 1957 y 1963.

‘Según un artículo en Der Spiegel (11), que citaba documentos publicados por la Bundesnachrichtendienst (agencia de inteligencia extranjera de Alemania) en 2014, Heusinger y Speidel podrían haber sido parte de Schnez-Truppe , un ejército ilegal secreto que los veteranos de la Wehrmacht y Waffen-SS se establecieron en Alemania en 1949 para repeler un ataque de la Unión Soviética.

“Uno pensaría que tal cosa es improbable o incluso imposible, pero la verdad es que un ejército ilegal secreto formado por nazis después de la Segunda Guerra Mundial sigue la Operación Gladio de la OTAN al pie de la letra.

Johannes Steinhoff , piloto de combate de la Luftwaffe durante la Segunda Guerra Mundial y ganador de la Cruz de Caballero de la Cruz de Hierro (el premio más importante del ejército nazi), se convirtió en el representante militar alemán ante el Comité Militar de la OTAN en 1960, se desempeñó como comandante en funciones de las Fuerzas Aéreas Aliadas de Europa Central en OTAN de 1965 a 1966, como Inspector de la Fuerza Aérea de 1966 a 1970 y como Presidente del Comité Militar de la OTAN de 1971 a 1974.

Johann von Kielmansegg , oficial de Estado Mayor del Alto Mando de la Wehrmacht entre 1942 y 1944, fue teniente general del Mando Supremo de las Fuerzas Terrestres Aliadas en Europa Central de la OTAN en Fontainebleau y Comandante en Jefe de las Fuerzas Aliadas en Europa Central de la OTAN entre 1967 y 1968.

Jurgen Bennecke también fue general de la Wehrmacht y Comandante en Jefe de las Fuerzas Aliadas en Europa Central de la OTAN entre 1968 y 1973 .

Ernst Ferber , comandante de la Wehrmacht y líder de grupo del departamento de organización del Mando Supremo del Ejército (Wehrmacht) de 1943 a 1945 y receptor de la Cruz de Hierro de primera clase, fue el Comandante en Jefe de las Fuerzas Aliadas de Europa Central de la OTAN desde 1973-1975.

Karl Schnell , jefe de batería en la campaña occidental en 1940, más tarde primer oficial del Estado Mayor General del LXXVI Cuerpo Panzer en 1944 y receptor de la Cruz de Hierro de segunda clase, fue el Comandante en Jefe de las Fuerzas Aliadas en Europa Central de la OTAN entre 1975 y 1977.

Franz Joseph Schulze , teniente en la reserva y jefe de la 3.ª batería del Flak Storm Regiment 241 y receptor de la Cruz de Caballero de la Cruz de Hierro en 1944, fue Comandante en Jefe de las Fuerzas Aliadas en Europa Central de la OTAN entre 1977 y 1979.

Ferdinand von Senger und Etterlin , teniente de la 24.ª División Panzer del 6.º Ejército alemán, ayudante del Alto Mando del Ejército, fue Comandante en Jefe de las Fuerzas Aliadas en Europa Central de la OTAN entre 1979 y 1983 .

‘[Nota: Esta no es una lista completa de los «antiguos» nazis que sirvieron bajo la OTAN.]

“Por lo tanto, desde 1957 hasta 1983, la OTAN tuvo al menos uno, si no varios, “antiguos” nazis de alto rango al mando de múltiples departamentos dentro de la OTAN.

El cargo de Comandante y Jefe de las Fuerzas Aliadas de Europa Central de la OTAN (Comandante en Jefe de las Fuerzas Aliadas de Europa Central de CINCENT, AFCENT) fue ocupado ÚNICAMENTE por «antiguos» nazis durante 18 AÑOS CONTINUOS, de 1965 a 1983 .

‘¿Puedes ver un patrón formándose todavía?

«Como se mencionó anteriormente en esta serie, en el contexto de esto, el reciente escándalo de Twitter de la OTAN que publicó el símbolo oculto nazi Black Sun el pasado día internacional de la mujer, podría no haber sido un error después de todo…»

Por lo tanto, existe una necesidad urgente de desnazificar no solo a Ucrania sino a todo Occidente, como afirman The Saker y otros analistas.

Pero esto no es suficiente. La naturaleza aborrece el vacío, decía Aristóteles. El Señor Jesucristo ilustra esto brillantemente en su parábola del hombre de quien ha sido expulsado un demonio:

‘Cuando el espíritu inmundo ha salido del hombre, pasa por lugares áridos en busca de descanso; y al no encontrar ninguno, dice: «Volveré a mi casa de donde salí». Y cuando llega, la encuentra barrida y arreglada. Entonces va y trae otros siete espíritus peores que él, y entrados, moran allí; y el último estado de ese hombre se vuelve peor que el primero’ ( El Santo Evangelio según San Lucas, 11:24-26 ).

Si la ideología nazi fuera expulsada de las naciones de la OTAN, debe ser reemplazada por algo mejor, o de lo contrario los habitarán espíritus más malignos y dañinos que los anteriores. Y lo único que bastará para alejar los poderes del mal es la Fe Ortodoxa, la Fe cristiana original de los pueblos europeos, antes de que surgieran las distorsiones de los obispos romanos (los papas católicos romanos), los protestantes, etc.

Hay un santo de la Iglesia Ortodoxa en particular que es muy relevante para los países de la OTAN: St Brendan the Voyager of Clonfert, Ireland:

‘SAINT BRENDAN nació en 484 en Ciarraighe Luachra cerca del puerto de Tralee, en el condado de Kerry, en la provincia de Munster, en el suroeste de Irlanda. Fue bautizado en Tubrid, cerca de Ardfert, por San Erc. Durante cinco años fue educado con Santa Ita, «la Brígida de Munster» , y completó sus estudios con San Erc, quien lo ordenó sacerdote en 512. Entre los años 512 y 530 San Brendan construyó celdas monásticas en Ardfert y, en al pie del monte Brandon, Shanakeel— Seana Cill , generalmente traducida como «la iglesia vieja»—también llamada Baalynevinoorach.

‘Desde aquí se supone que partió en su famoso viaje de siete años al Paraíso. Los antiguos calendarios irlandeses asignaban una fiesta especial para la «Egressio familiae S. Brendani», el 22 de marzo; y St Aengus the Culdee, en su letanía compuesta a fines del siglo VIII, invoca «los sesenta que acompañaron a St. Brendan en su búsqueda de la Tierra Prometida».

— OODEGR

Es más,

‘S t. Brendan es uno de los más grandes ascetas que vivieron en Irlanda. Según la tradición, a la edad de dos años, el pequeño Brendan fue entregado por San Erc al cuidado de la ilustre santa abadesa Ita († c. 570; fiesta: 15 de enero) de Killeedy en Limerick, conocida como “la madre adoptiva de los santos irlandeses”. Bajo Santa Ita Brendan estudió los rudimentos del cristianismo durante cinco años, y mantuvo el amor y el respeto por la abadesa que siempre lo nutrió y le enseñó. Después de Killeedy, se cree que San Brendan fue a Tuam en Galway, al famoso monasterio y escuela fundado por San Jarlath († c. 540; fiesta: 6 de junio). Además, San Brendan fue discípulo de Santa Enda de Inishmore (+ c. 530; fiesta: 21 de marzo), uno de los primeros fundadores monásticos en Irlanda.

‘Nuestro santo también fue al famoso Monasterio de Clonard en el condado de Meath con el gran San Finnian († 549; fiesta: 12 de diciembre), «el Maestro de los santos irlandeses», o uno de sus sucesores. En particular, San Brendan el Navegante (al igual que su santo tocayo, San Brendan de Birr en Offaly, quien descansó en c. 573 y se celebra el 29 de noviembre) está clasificado entre «los Doce Apóstoles de Irlanda», todos los cuales estaban en Clonard. Por último, la tradición dice que el joven santo viajó a Gales, donde pasó una temporada con san Gildas (o san Cadoc ) en Llancarfan in Glamorgan, en el monasterio famoso por su saber. El monacato irlandés y galés de la época estaban estrechamente interconectados.

‘Habiendo sido instruido por santos monásticos tan célebres, San Brendan fue tonsurado como monje, ordenado y luego viajó al oeste de su Irlanda natal para fundar iglesias, hacer un extenso trabajo misionero y pastorear a sus compatriotas. Todos sus biógrafos escribieron que San Brendan llevó una vida ascética austera y ganó fama como taumaturgo. Se destacó por un extraordinario celo por la oración, extrema abstinencia, profunda humildad y gran misericordia y amor por todos. En Irlanda y Escocia (que visitó muchas veces) San Brendan estableció una gran cantidad de monasterios. El más famoso de ellos, fundado alrededor de 559, fue Clonfert, en la orilla oeste del río Shannon en el condado de Galway. Clonfert, creado por St. Brendan, era famoso en toda Irlanda. En un momento se dice que tuvo unos 3.000 monjes,

— Sr. Dmitri Lapa

Pero es el viaje de San Brendan a través del Atlántico (relatado en el largo poema del siglo VIII o IX, The Voyage of St Brendan ) lo que sella su importancia para Occidente:

‘Se cree que San Brendan y su grupo de compañeros hicieron un viaje de siete años a través del Atlántico hacia el oeste de su tierra natal, visitando las mismas islas en los días de las principales fiestas de la Iglesia cada año para servir a la Liturgia. . Sin embargo, el propósito de sus viajes era la oración incesante a Dios (como práctica ascética; en este caso el océano servía como su “desierto”), construyendo iglesias y capillas, convirtiendo a los habitantes insulares y probablemente difundiendo manuscritos irlandeses y otras habilidades. Incluso es posible que estos misioneros unos 1000 años antes de que Cristóbal Colón llegara a las costas de América del Norte y Central, Groenlandia y Terranova, o incluso América del Sur y las Islas Canarias.

‘Lo que es seguro, sin embargo, es que San Brendan navegó a las Hébridas (donde fundó al menos dos monasterios: en Tiree y Eileach an Naoimh, donde sobreviven ruinas monásticas muy tempranas), Orkney, Shetland (todos ellos en Escocia) , Escocia continental (donde fundó al menos una comunidad monástica en su costa oeste y tuvo un memorable encuentro con Santa Columba de Iona), las Islas Feroe (ahora perteneciente a Dinamarca), Islandia (donde se le recuerda en algunas tradiciones), Gales (donde St. Malo estaba entre sus amigos) y Brittany’ (Ibíd.).

Por lo tanto, San Brendan, al fundar monasterios e iglesias, enviar discípulos, navegar y caminar sobre muchas de las tierras del Atlántico Norte, las une a todas dentro de sí mismo, haciendo de San Brendan una imagen muy adecuada de un santo patrón. para las naciones que componen la alianza de la OTAN.

Su vida como marino y la naturaleza talasocrática de la OTAN hacen de San Brendan un padre aún más apropiado para los países de la OTAN.

Siendo todo esto así, proponemos que la OTAN sea eliminada y reemplazada por la Liga de St Brendan the Voyager, una verdadera liga de amistad entre los pueblos del Atlántico Norte bajo el patrocinio de St Brendan que combinaría algunos de los aspectos económicos y políticos. características de la CSTO y la Iniciativa de la Franja y la Ruta, un gran espacio civilizatorio en el que la fe ortodoxa sería una vez más la principal fuerza cultural, que apunta a sus países hacia el verdadero Paraíso de la teosis y no hacia las falsas imitaciones del transgenerismo, el transhumanismo, y así.

Y debido a su espíritu ortodoxo, sería capaz de superar la oposición dialectal entre su enfoque marítimo y el poder terrestre de Rusia:

‘Curiosamente, el arcipreste Alexander Shabanov, que sirve en las iglesias del Velo Protector de la Madre de Dios y de San Arsenio de Tver en la ciudad rusa de Tver, ha dedicado algunos de sus libros a los santos anteriores al cisma de los británicos. Islas e Irlanda, incluido St. Brendan the Voyager. En sus obras, “St. Brendan the Navigator, in Quest of the Promised Island” y “Boats to St. Brendan” (ambos en ruso), realizó una investigación exhaustiva sobre la “Navigatio” desde varias perspectivas, tratando de rastrear elementos de verdad y ficción y varias influencias de sagas medievales sobre los viajes de San Brendan. Al final de su trabajo especula que San Brendan y sus compañeros/seguidores podrían haber caminado por Escandinavia, el Báltico, llegando a la Península de Kola, visitando algunas áreas en lo que ahora es el noroeste de Rusia, especialmente los distritos cerca del lago Ladoga, el lago Ilmen y el río Volkhov. Procede a suponer que el Bautismo de Rusia tuvo lugar no sin la participación de los celtas (los irlandeses), quienes pueden haber construido algunas iglesias y erigido “cruces de pie” celtas en las áreas mencionadas, e incluso en Novgorod y Kiev (plantea la hipótesis de que el primer monasterio en Kiev hasta el siglo XI fue irlandés!). Aunque carecemos completamente de evidencia para probar esto, algunos historiadores contemporáneos especulan que los misioneros irlandeses individuales pueden haber caminado hacia el este hasta el norte de Rusia. No es imposible’ (Ibíd.). quien pudo haber construido algunas iglesias y erigido “cruces de pie” celtas en las áreas mencionadas, e incluso en Novgorod y Kiev (¡plantea la hipótesis de que el primer monasterio en Kiev hasta el siglo XI fue irlandés!). Aunque carecemos completamente de evidencia para probar esto, algunos historiadores contemporáneos especulan que los misioneros irlandeses individuales pueden haber caminado hacia el este hasta el norte de Rusia. No es imposible’ (Ibíd.). quien pudo haber construido algunas iglesias y erigido “cruces de pie” celtas en las áreas mencionadas, e incluso en Novgorod y Kiev (¡plantea la hipótesis de que el primer monasterio en Kiev hasta el siglo XI fue irlandés!). Aunque carecemos completamente de evidencia para probar esto, algunos historiadores contemporáneos especulan que los misioneros irlandeses individuales pueden haber caminado hacia el este hasta el norte de Rusia. No es imposible’ (Ibíd.).

Esta es, entonces, nuestra visión y nuestra esperanza: el fin de la alianza de la OTAN como la hemos conocido, y su reemplazo con una liga de amistad ortodoxa del Atlántico Norte que se extienda desde América del Norte a través de Europa y que abarque también a Rusia.

Que Dios lo haga realidad y lo bendiga, a través de las oraciones de San Brendan el Viajero.

https://katehon.com/en/article/league-saint-brendan

INTOXICACIÓN POR CADMIO.

POSIBLE MECANISMO DE ACCIÓN DEL CADMIO COMO PRODUCTOR DE CASOS GRAVES ADJUDICADOS AL COVID19

CIENCIA ESA DESCONOCIDANOS-NUEVO ORDEN SECULARSALUD por YANE

Para empezar a explicar el por qué esta intoxicación en concreto puede ser la causante de los cuadros graves responsables del 5% del grupo de gravedad que requiere UCI y que son a mi juicio, mal diagnosticados como coronavirus, hagamos una exposición del cuadro clínico que se ha venido observando durante la pandemia en el contexto del principio de marzo-abril.

Como sabéis hasta por cansancio, la VO describe esta enfermedad como causada por el virus SarsCov2 , zoonosis presente en un murciélago o pangolín que salto a humanos en Wuhan, China y que se aisló y secuenció en solo una semana, identificándolo como agente causal. Este hecho ya es más que sospechoso, pero además es que una servidora no cree en la teoría infecciosa de las enfermedades. En otro momento explicaré mis argumentos. Ahora seguidme en la posible etiología tóxica, ya que del coronavirus tenéis bastante literatura.

¿Qué síntomas son los característicos de la infección por Coronavirus?

¿A quienes afecta?

¿Qué síntomas son los característicos de la infección por Coronavirus?

¿A quienes afecta?

Como veréis, un 5% termina requiriendo cuidados intensivos y de ellos un 50% fallece.

¿Qué observamos en la analítica?

Tenemos un 83 % de linfopenia, o lo que es lo mismo, linfocitos disminuidos.
En casi todos los procesos virales, se observa lo contrario, o sea un aumento de los linfocitos en sangre (Linfocitosis).
La linfopenia sería un marcador de un agotamiento del sistema inmune o de una deficiencia del mismo.

Los linfocitos T constituyen la mayoría (60-80 %) del total de linfocitos periféricos, el resto comprende a los linfocitos B y las células “natural killer”.

El número de linfocitos varía con la edad, los bebés normalmente tienen recuentos más altos y los ancianos los mas bajos. Esto sucede por la normal involución del Timo, órgano en el que se activan los linfocitos T para su funcionamiento y que va involucionando con la edad.

La edad avanzada es uno de los factores de riesgo en la infección por Covid19.
Veamos ahora las causas de linfopenia, teniendo en cuenta que se enmarca con «síntomas» de una infección viral, por tanto infecciosa.

En la mayoría de los casos, ya sabemos que la enfermedad se manifiesta como la clásica gripe por influenza, que como veis, es una de las causas de linfopenia.

Observamos además otras enfermedades que tienen el común denominador de déficit del sistema inmune. En mi caso como «no creyente» del origen infeccioso de la enfermedad, entiendo que hay una predisposición de estos pacientes por su déficit inmune a ser mas «débiles» a cualquier ataque a nuestro cuerpo. La gripe estacional parece ser eso, una caída del sistema inmunológico propia del invierno por la bajada de temperaturas.

Los metales pesados suelen causar anemia y linfocitosis (aumento de los linfocitos) pero el cadmio, se comporta de manera diferente, se asocia con linfopenia.

Avancemos hacia los «cuadros» observados y corroborados por las autopsias practicadas en Italia y España único vestigio científico que nos queda para analizar el comportamiento en sangre y otros órganos.

Telecinco sabe como alegrar el día a sus feligreses aunque la primera no se quedaba atrás.

Veremos en primer lugar, los pulmones. Se habló mucho de las «neumonías atípicas bilaterales». El hecho de indicar que las lesiones eran bilaterales sugiere entrada aérea.

Como veis aquí, en lenguaje técnico, os señalo datos que llevan a pensar en un proceso inflamatorio propio del distrés que padecían estos pacientes pero acompañado de un evidente trastorno de la coagulación (por eso la presencia de fibrina y megacariocitos, que son otro nombre que reciben las plaquetas). Esto explicaría el aumento del Dímero D que vimos antes entre los hallazgos de la analítica sanguínea. El dímero D en la sangre es un fragmento de proteína que se produce cuando un coágulo de sangre se disuelve en el cuerpo.
 
El daño alveolar difuso (DAD) es la clásica manifestación histológica (o sea en tejidos) del síndrome de distrés respiratorio del adulto (SDRA)/daño pulmonar agudo. La etiología es muy variada, incluyendo agentes infecciosos, inhalantes, drogas, shock, sepsis, radiación, miscelánea e idiopática. De la sintomatología destaca la hipoxemia severa, y la radiología se caracteriza por un infiltrado pulmonar difuso bilateral.
Sin embargo al principio de la pandemia los médicos estuvieron siguiendo protocolos inadecuados que llevaron a la tumba a muchos miles de pacientes.


Reproductor de vídeo

Así que no solo podemos ver esto en un cuadro infeccioso. Ya os digo que hasta el momento no hay ningún virus capaz de hacer esto, acompañado de fenómenos tromboembólicos, sino que también lo pueden hacer tóxicos por inhalación, como nuestro presumible cadmio.

Ya en abril algunos médicos planteaban la hipótesis de que el virus estaba alterando la estructura de la hemoglobina pero sin describir que podría deberse a un metal tóxico como el cadmio.

El Dr Hany Mahfouz que fue Ministro de Educación Superior de Egipto y Ministro de Estado de Investigación Científica y tiene un doctorado en ciencias de la tierra, o sea, es un experto en minerales lo dejó caer en algunas publicaciones en Facebook que como leiamos antes corrieron como la pólvora por Wasapp.

Y es que el cadmio, produce algo similar a la llamada «gripe de los fundidores» en su entrada respiratoria. Los síntomas son los típicos de una gripe. Si la intoxicación es masiva puede llegar a provocar una neumonitis química, como esta que se está descubriendo en la autopsia y hasta la muerte por edema del pulmón.

En resumen, la hipoxia o falta de oxígeno no se debe al pulmón propiamente sino a la incapacidad de la hemoglobina de transportarlo, ya que libera el hierro  y este hierro intoxica al pulmón.

Como no creemos en el virus, sustituyamos este elemento por el cadmio y veamos que ocurre esto mismo.

Ha llegado la hora por tanto, de explicar el mecanismo de acción del cadmio, pero para ello tenemos que seguirle la pista al hierro y tendremos que hablar de la ferritina, que fue anteriormente mencionada en el análisis. Se le considera un marcador de gravedad o sea, su aumento es signo de mal pronóstico.

¿Qué es la ferritina?

También está en los macrófagos pulmonares, y he aquí donde entra en juego el cadmio.

El cadmio inhibe la fosforilación oxidativa de los macrófagos pulmonares.

La fosforilación oxidativa es un proceso metabólico que utiliza energía liberada por la oxidación de nutrientes para producir adenosina trifosfato (ATP). Se calcula que hasta el 90 % de la energía celular en forma de ATP es producida de esta forma. Es la transferencia de electrones de los equivalentes reducidos NADH y FADH, obtenidos en la glucólisis y en el ciclo de Krebs hasta el oxígeno molecular, acoplado con la síntesis de ATP.  Constituye la respiración celular que ocurre en la mitocondria.

https://www.ecured.cu/Fosforilaci%C3%B3n_oxidativa

Así que al bloquear la fosforilación oxidativa, no deja a los macrófagos respirar, estos a consecuencia de ello mueren dejando expuestas sus reservas de hierro en forma de ferritina que se encontraban ahí almacenadas. Esta ferritina pasaría a la sangre rápidamente, teniendo en cuenta que los alvéolos son la zona más en contacto con ésta para el intercambio de sustancias que normalmente constituye su función.

Esto explica como el cadmio es capaz de causar las lesiones del distrés respiratorio que vimos en las autopsias, y el aumento de la ferritina que efectivamente es un marcador de la gravedad dado su aumento por destrucción de macrófagos pulmonares.

Ya en marzo estaba en el tejado de los médicos…sin embargo no se hizo nada.

El déficit de vitamina D o el nulo consumo de carne también favorecen a que nos intoxiquemos por cadmio. Recuerden que los ancianos y algunos deportistas que reconocían no comer carne y tener dietas con alto contenido de fitatos (inhibidores de la absorción de minerales contenidos en los vegetales) estuvieron entre los pacientes más graves ingresados en las UCI.

Es posible que una de las fuentes de inhalación del cadmio haya provenido de la geoingeniería o de las fumigaciones masivas con productos en zonas de riesgo (grandes ciudades, residencias de ancianos, etc)…por supuesto ésto no lo sabremos nunca.

Dentro del ciclo de Kreps, hay una enzima a la que se le hace responsable de estos cuadros, especialmente por el uso de Hidroxicloroquina: la glucosa-6-fosfato deshidrogenasa (6GDP). Este déficit es la eritroenzimopatía (alteración de las plaquetas por una enzima) más frecuente del mundo y está ligada al cromosoma X.

Si el cadmio, tal y como os expongo, es inhibidor de la fosforilación oxidativa, afectaría también al ciclo de Krebs y por tanto a la 6GDP, y sí, lejos de ayudar estaríamos empeorando el cuadro. Por tanto, no estaría recomendado su uso y sí, podría ser el responsable de muchas muertes (que no del cuadro principal) con el aumento de la ferritina que describimos, y que está presente desde el principio, y no necesariamente pasaría en los pacientes con déficit de esta enzima, pero esa condición presente sería fatal. Después de todo, somos muy duros.

Precisamente la gente que vivimos en el Mediterráneo tenemos un pequeño porcentaje de esta alteración y podría ser muy contraproducente el uso de la Hidroxicloroquina…imaginense los pobres africanos donde se prescribe para el tratamiento de la Malaria.

Prevalencia mundial del déficit de glucosa-6-fosfato deshidrogenasa

La HCQ (Hidroxicloroquina) a dosis altas o continuadas provoca efectos al parecer acumulativos (no está claro su mecanismo de acción según vademécum) en los sitios donde se sintetiza la melanina. Esta es una sustancia que da color a la piel para protegerla. Se encuentra en la piel, cabello iris, retina, genitales y hasta en el cerebro. Tiene afinidad por el tejido fibrótico pulmonar hacia donde evolucionan las lesiones de DAD que antes describía en la autopsia.

No se si recordais aquel médico chino que murió con la piel negra. Sería un ejemplo de cómo se deposita en la piel.

El hierro también se absorbe a nivel del duodeno y principios del yeyuno. Lo hace a través de la proteína transportadora DMT 1, común para otros metales como el zinc y el cobre, vía también válida para el cadmio.

Establece una especie de competencia con este metal. Se ha observado en estudios que los pacientes con anemia por déficit de hierro son más vulnerables a la absorción de cadmio. Las mujeres suelen ser mas propensas a este tipo de anemia por las pérdidas menstruales y los síntomas suelen pasar inadvertidos. Los ancianos también son un grupo de riesgo al respecto.

La proteína transportadora DMT1 agravaría el cuadro por la entrada de mas cadmio por la vía digestiva. Para que el cadmio o cualquier metal pesado atraviese los alvéolos pulmonares y llegue a la sangre, ha de tener menos de 1 nm, tal y como asegura esta publicación.

http://www3.uah.es/bioquimica/Tejedor/bioquimica_ambiental/T3.htm

La entrada pulmonar masiva, deja en la faringe (órgano común del sistema respiratorio y digestivo) las nanopartículas que serían deglutidas y a su paso por el estómago, pasarían a formas mas fáciles de absorción.

La proteína transportadora DMT 1 tiene un análogo en los macrófagos y los neutrófilos, DMT1 o proteína 1 del macrófago asociada a resistencia natural 1 (Nramp1). Esto explicaría el daño a nivel de otros órganos que también poseen macrófagos del sistema retículo endotelial como las células de Kupffer del hígado, (esto explica el aumento de las transaminasas), células mesangiales (riñón),  las células de Langerhans de la epidermis, los osteoclastos del tejido óseo, la microglía del SNC, los macrófagos  del bazo o de las serosas pleural y peritoneal, o sea, todo un fallo multiorgánico que llevaría a la muerte.

Este vídeo de Josep Maria Subirá, enfermero Especialista en Medicina del Trabajo y Salud Laboral sobre el cadmio nos explica cómo nos intoxica el cadmio.

Una de las cosas que mas me refuerza en que el agente causal sea el cadmio son las secuelas que se están describiendo.
https://www.eldiario.es/sociedad/secuelas-covid-19-cara-visible-pandemia_1_6049951.html

Tendremos fibrosis pulmonar, lesiones renales, cardíacas, trombosis, disgeusia y anosmia (pérdida del olfato y el gusto), entre otras.

Este último síntoma puede estar causado por el déficit de zinc pero también por cadmio.

Gisbert- Calabuig

Curiosamente se les indicó a los médicos esta deficiencia de zinc en los pacientes con Covid19.


Y resulta todavía más curioso como los masones se avisaban ya a principio de abril sobre tomar zinc, vitamina C y otras substancias.

La intoxicación por cadmio por vía digestiva fue descrita por primera vez en 1912 en Japón, lugar en el que hubo exposiciones a este metal de forma crónica por el vertido del mismo en el río Jitsu.

La enfermedad itai-itai es, junto a los envenenamientos por metilmercurio de Minamata y Niigata-Minamata, y el asma por contaminación atmosférica de Yokkaichi, uno de los cuatro grandes desastres sanitarios ocurridos en Japón por causa de la contaminación.

Se llama enfermedad itai-itai a una dolencia ósea debida a la intoxicación por cadmio. Se caracteriza por múltiples fracturas, alteraciones combinadas con osteoporosis y osteomalacia, daño renal, enfisema y anemia. ¿Me pregunto cuántas mujeres no han sido diagnosticadas erróneamente de osteoporosis siendo esta la causa o en cuántos abuelos habrá pasado inadvertido por la artrosis y fracturas achacadas a la edad?

Se observó una marcada prevalencia en mujeres posmenopáusicas mayores en las que provoca dolores violentos en la pelvis y miembros inferiores.

Hubo una mayor prevalencia en personas mayores malnutridas y en mujeres embarazadas o en lactancia. ​El agua, cargada de cadmio, zinc, cobre y plomo, se usa para inundar los arrozales. El arroz es capaz de bio concentrar el cadmio, hasta 3 veces más que el contenido del agua. El suelo tenía unos niveles de 1,1 ppm, frente a 0,3 ppm de los suelos no contaminados.

Os recomiendo este artículo si queréis saber más sobre estos envenenamientos criminales.
https://www.nippon.com/es/currents/d00383/

En este caso la vía digestiva fue utilizada pero también hay otro hecho que se encuentra relacionado con la geoingeniería. Es el caso de la Operación Lac.

La Us Army Chemical Corps realizó la Operación LAC (Largue Area Coverage), la cual consistió en fumigar extensas zonas de Estados Unidos con Sulfato de cadmio de Zinc (ZnCdS).

La operación LAC, no fue otra cosa que un experimento químico, efectuado por el gobierno estadounidense para determinar qué efectos produciría en la población, la dispersión de sustancias nocivas para ésta.

Se eligió fumigar a la población con sulfato de cadmio de zinc, porque su tamaño (2-3 micras), era muy similar al tamaño y la masa de las partículas de los agentes biológicos de uso militar, además de ser un producto relativamente fácil y barato de fabricar y de poder ser visto con facilidad con una luz ultravioleta.

Este producto no es soluble en el agua, por lo cual se consideró que no afectaría a plantas ni animales (hombres incluidos).
Os dejo enlace
https://blogs.elcorreo.com/jorbasmar/2013/07/16/operacion-lac/

Llegados a este punto comprenderéis que la hipótesis del cadmio supone creer que los gobiernos (o los que los controlan realmente) deben estar detrás de todo esto. Esto resulta muy complicado de asimilar por las personas normales. Desgraciadamente la gente normal desconoce cosas como el Proyecto N.

EN 1943 EN GROSSE-ILE, UNA PEQUEÑA ISLA DE CANADÁ, LOS CIENTÍFICOS LLEGARON A PRODUCIR EN SECRETO, PARA LOS ALIADOS, SETENTA MIL MILLONES DE DOSIS LETALES DE ÁNTRAX. HABÍA SUFICIENTE ÁNTRAX COMO PARA ANIQUILAR TREINTA VECES LA POBLACIÓN MUNDIAL DE LA ÉPOCA. EL LLAMADO «PROYECTO N» SOBRE ANTRAX SOLO DURARÍA DOS AÑOS, SIN EMBARGO, ES UNA HISTORIA QUE TODAVÍA TIENE PUNTOS OSCUROS. MUCHOS DE LOS ARCHIVOS ESTÁN INCOMPLETOS, SE HAN BORRADO O HAN DESAPARECIDO.

Y ojo, porque cuando este tipo de cosas se desclasifican es por algún motivo. En este caso yo sospecho que todo el tema del ántrax no es tal como lo pintan y quizás el envenenamiento no sea debido a un virus o una bacteria y si a algún compuesto tóxico presente en las esporas de ántrax.

Posiblemente desaparezca de Youtube, así que colgaremos una copia muy pronto.

Fue precisamente la presencia de nieblas muy densas en esos días del comienzo de la #tragipandemia lo que le hizo sospechar a Tec sobre un posible tóxico que pudiera entrar por esta vía. Al comentarmelo, busqué un metal que provocará todo esto hasta llegar al cadmio. Este es el resumen que os puedo ofrecer.

En cuanto a la forma de entrada por todo lo que os he explicado de síntomas respiratorios similares a la gripe no me queda duda de que hubo una exposición de los pacientes al cadmio por esta vía, que incluso cuadros de supuesta gripe o bronquitis fueran por su inhalación, pero no os asustéis, la gravedad sólo es válida para un grupo reducido que al ser mas vulnerable reaccionó de esta manera.

En cuanto al polisorbato 80 presente en las vacunas, no me parece descabellado como forma de entrada, pero más para predisposición. Se trata de un emulgente, o sea que disuelve grasas. Podría ser que el mismo compuesto facilitara la rotura de la membrana celular que posee una estructura de lípidos y glicoproteínas e incluso que en el tejido adiposo formará una especie de cápsula liberadora de metales pesados. Como estamos con el cadmio como agente productor, tengo que decir que en las vacunas de la gripe no viene reportado.

Posiblemente hablemos de los componentes «extra» contenidos en las vacunas en un algún futuro artículo desvelando que como se cita en algunos estudios contienen nanopartículas metálicas muy posiblemente debido a la geoingeniería.

Sin embargo en la vacuna del Papiloma humano, hubo una condena por encontrar dicho metal en un análisis de los componentes que realizó una demandante a la que se le había provocado un daño, precisamente por no  reportar los fabricantes su presencia.

Me despido con una noticia que hace pensar. Se trata de la huella con la que podremos identificar este periodo de «confinamiento» en el futuro. Los casquetes polares albergarían trazas de aerosoles, si, de cadmio. ¿Cómo es posible?

Espero que podáis asimilar todo esto y que os lo haya puesto fácil de comprensión. Se que es complicado pero necesario para llegar a la verdad.

Un abrazo y feliz día.

Espero que podáis asimilar todo esto y que os lo haya puesto fácil de comprensión. Se que es complicado pero necesario para llegar a la verdad.

Un abrazo y feliz día.

Actualización a 28 de diciembre de 2020.

He sido sabedor de un estudio realizado en USA por el Dr Howard Hu, y Sung Kyun Park, Coralynn Sack y Matti J. Sirén donde relacionan el cadmio con las complicaciones respiratorias causantes de muertes en enfermedades respiratorias como la neumonía o la gripe común.

El propio doctor Hu concede una entrevista a una revista médica explicando que sospechaban del cadmio como elemento externo que complicaba mucho algunas de las enfermedades pulmonares típicas.

En el propio estudio se dice textualmente:

SE HA DEMOSTRADO EXPERIMENTALMENTE QUE EL CADMIO ES POTENTE PARA INDUCIR LA EXPRESIÓN Y LIBERACIÓN IN VITRO DE CITOQUINAS EN FIBROBLASTOS HUMANOSCÉLULAS EPITELIALES Y MACRÓFAGOS DESPUÉS DE LA EXPOSICIÓN A 7 LM DE CD + 2 DURANTE 7 H (LÅG ET AL. 2010) Y PROMOVER EL PULMÓN INFLAMACIÓN Y DETERIORO DE LA FUNCIÓN INMUNITARIA MEDIADA POR MACRÓFAGOS EN ESTUDIOS DE CADMIO INHALADO EN ROEDORES, LO QUE CONDUCE A UNA DISMINUCIÓN DE LA RESISTENCIA A LOS PATÓGENOS (KOLLER 1998). RECIENTEMENTE SE HA DEMOSTRADO QUE EL CADMIO EN DOSIS NO CITOTÓXICAS ALTERA LA INTEGRIDAD DE LA UNIÓN ESTRECHA EN UN MODELO DE TEJIDO DE LAS VÍAS RESPIRATORIAS DE LA INTERFAZ AIRE-LÍQUIDO HUMANO, LO QUE ALTERA LA FUNCIÓN DE LA BARRERA EPITELIAL (CAO ET AL. 2015) Y EN UN MODELO DE RATÓN, LA PREEXPOSICIÓN DE CADMIO A UN NIVEL SE DEMOSTRÓ QUE LA INGESTA DIETÉTICA POTENCIA LA INFLAMACIÓN PULMONAR EN LA INFECCIÓN POSTERIOR CON EL VIRUS SINCITIAL RESPIRATORIO.

No hace falta decir que todo esto se da en estos extraños casos de gente sana que ha muerto supuestamente por Covid19.

Este doctor ha prometido investigar sobre la participación del cadmio en el empeoramiento por Covid19.

Se sabe que el cadmio se acumula en los tejidos pulmonares humanos y que se bioacumula allí. Según la oficialidad la forma más directa para que llegue el cadmio a nuestros pulmones es fumar. Pero en este estudio estadístico con casi 8000 casos que representan (ojo al dato) a 66,6 millones de adultos queda claro que da igual que seas fumador o que no lo seas.

EN CONCLUSIÓN, EL PRESENTE ESTUDIO SUGIERE QUE UNA MAYOR CARGA DE CADMIO SE ASOCIA CON UNA MAYOR MORTALIDAD POR INFLUENZA / NEUMONÍA. ESTOS HALLAZGOS FUERON SÓLIDOS INCLUSO ENTRE QUIENES NUNCA FUMARON, LO QUE SUGIERE QUE LA CARGA DE CADMIO ES UN FACTOR DE RIESGO INDEPENDIENTE DEL TABAQUISMO.

¿De donde procede este cadmio entonces? Según este doctor casi todo a través de la alimentación.

LOS GRUPOS DE ALIMENTOS QUE SE ESTIMA QUE CONTRIBUYEN MÁS A LA INGESTA TOTAL DE CADMIO ENTRE LOS PARTICIPANTES DE NHANES (KIM ET AL.2018) SON CEREALES Y PAN (34%), VERDURAS DE HOJA (20%), PATATAS (11%), LEGUMBRES Y FRUTOS SECOS (7%) Y HORTALIZAS DE TALLO / RAÍZ (6%), CON UN CONSUMO PROMEDIO DE CADMIO EN LA DIETA TOTAL DE 4,63 MICROGRAMOS AL DIA (UN MICROGRAMO 0.000001 G)

Yo le recomendaría a este doctor a que mirase hacia arriba más a menudo, quizás la geoingeniería tenga algo que ver en todo este asunto, pero eso es algo que dudo ningún investigador se atreva a estudiar.


Bibliografía

– Gilbert/ Calabuig Toxicología

Otros enlaces de interés

– Artículo que explica la función proapoptoica de la mitocondria.

https://www.elsevier.es/es-revista-offarm-4-articulo-la-mitocondria-como-diana-farmacologica-13041301

– Efectos genotóxicos del cadmio y otros metales

https://drive.google.com/file/d/1VsxmST6YxrYcqCU0c7Nn36dwPxvrjk0X/view?usp=drivesdk

– Cadmio neurotóxico

https://drive.google.com/file/d/1VnBNxQd19hLC2CWj8HjA1mAukgAQyYoX/view?usp=drivesdk

– La fábula de los animales con el virus de la corona

https://t.co/qc63iYlQD9?amp=1

– Cadmio vinculado a infecciones más graves por influenza y neumonía

https://www.news-medical.net/news/20201222/Cadmium-linked-to-more-severe-flu-and-pneumonia-infections.aspx

– Cadmio ambiental y mortalidad por influenza y neumonía en adultos estadounidenses

https://ehp.niehs.nih.gov/doi/10.1289/EHP7598

Fuente : https://tecnicopreocupado.com/2020/10/24/posible-mecanismo-de-accion-del-cadmio-como-productor-de-casos-graves-adjudicados-al-covid19/

Máscaras. La colaboración necesaria de la izquierda en el NOM.



MÁSCARAS
 

01. El anti-capitalismo

Una de las claves para desenmascarar estos movimientos es que critican el capitalismo, el neoliberalismo, a las élites, a la «casta», a los bancos, al sistema de deuda, etc., pero lo hacen superficialmente.

Es verdad que han actualizado en parte su discurso y en lugar de confrontar capitalista-trabajador ahora presentan oposiciones tales como acreedor-deudor, élites-ciudadanía, etc.

Pero en general siguen en el marco del pensamiento marxista que pretende explicar y reformar el sistema en términos de estructura.

Con ello eluden el fondo de la cuestión, que es que la dominación capitalista fundamental, y especialmente la hollycapitalista de hoy, se ejerce en última instancia al margen de la estructura económica, en el ámbito de la guerra, la inteligencia, la criminalidad, la impunidad, el secretismo y la conspiración.
 


02. El globalismo

Todo lo que lleve el adjetivo «global» debe despertar nuestras sospechas.

Toda una serie de iniciativas «globales» que se presentan como,

humanitarias, ecológicas, justas, redistributivas, fiscalizadoras, etc.,

…son máscaras que esconden una lógica muy simple, que es que cuanto mayor sea el alcance de las estructuras de poder mayor será su capacidad para imponerse de manera violenta sobre todos aquellos que se opongan a ellas.

El globalismo es un eufemismo de imperialismo, y no hay nada que haga pensar que el imperio global de hoy sea distinto del resto de imperios históricos.

Solo ha desarrollado mecanismos más sutiles para enmascararse.
 


03. El soberanismo

Hoy el pulso fundamental se está manteniendo entre los estados-nación, en particular los BRICS, y las estructuras globalistas.

Esto significa que todo lo que debilite a los estados-nación tenderá a reforzar las estructuras globales.

El poder es una hidra con numerosas cabezas. Opera empujando alternativamente los dos platos de la balanza para desestabilizarla y aprovecharse de ello transformando las estructuras de dominación.

Las transferencias de soberanía de los estados-nación al Nuevo Orden Mundial se están produciendo por arriba y por abajo, por la derecha y por la izquierda, desde los estados-nación hacia las estructuras transnacionales y hacia las regionales.
 


04. La transparencia y la corrupción

Muchos de estos movimientos pretenden luchar por una sociedad más transparente, aparentan combatir la corrupción en las estructuras de poder.

El problema es que, de nuevo, tienden a poner el acento en la transparencia y en la corrupción de los políticos y de los estados-nación, y no en el complejo entramado que está por encima de ellos.

De esta manera estas iniciativas contribuyen en última instancia a debilitar las estructuras estatales y con ello a reforzar la opacidad y la corrupción de las estructuras transnacionales.
 


05. La horizontalidad

Es necesario comprender que las estructuras horizontales no se oponen a la verticales, como nos pretenden hacer creer.

Las estructuras horizontales encubren también mecanismos de dominación verticales y centralizados, solo que más sofisticados y más sutiles que los tradicionales.

En el fondo la lógica es similar a la del intercambio mercantil, que aparenta ser horizontallibreregulado espontáneamente por la oferta y la demanda, cuando en la práctica está tensada permanentemente por la asimetría del poder, basada en la apropiación de recursos naturales, energéticos, en la creación de dinero fiduciario, de información, etc.

La horizontalidad también es una apariencia en la medida en que el poder infiltra agentes o colaboradores en la estructura aparentemente.

Tanto más fácilmente cuanto más horizontal es la estructura.

Wikipedia es el mejor ejemplo de esta falsa horizontalidad, como una iniciativa solo en parte horizontal, colaborativa, etc., pero en la que la información más sensible es manipuladatergiversada y censurada desde los centros de poder globales.



06. La participación

Este tema está estrechamente vinculado al anterior.

Los movimientos participativos, colaborativos, asamblearios, voluntarios, no mercantiles, etc., pueden ser enriquecedores a un cierto nivel, pero pueden servir también como dispositivos de amortiguación y recuperación que mantienen ocupados a los participantes y evitan que se impliquen en los temas fundamentales.

Pretenden ser movimientos autónomos pero en la práctica siguen dependiendo de las estructuras de dominación globales.

La clave para valorar estas iniciativas es hasta qué punto contribuyen, aunque sea indirectamente, a la dominación hollycapitalista, hasta qué punto, tras las máscaras de la cooperación, lo común, lo libre, etc., lo que está en juego es la apropiación del trabajo, las ideas y las energías de la ciudadanía por parte del gran capital.



07. La sostenibilidad

La sostenibilidad, el ecologismo, lo verde, lo biológico, etc., pueden ser iniciativas loables siempre que actúen a la escala local o regional, que desafíen verdaderamente a las estructuras de dominación global.

Como decíamos, hay que valorarlas en función de la escala y el verdadero impacto que tienen en otras escalas del sistema.

La sostenibilidad y el ecologismo considerados a gran escala encubren la desindustrialización de los centros, la dependencia de estructuras de producción y distribución globales, la implementación de mecanismos de control de las periferias desde los centros.

En última instancia, la sostenibilidad a la escala global encubre la agenda eugenésica de las élites hollycapitalistas.



08. El humanitarismo y el antirazismo

De nuevo estos temas suelen ser utilizados por el sistema como caballos de Troya.

El humanitarismo está siendo utilizado sistemáticamente para legitimar guerras, en el colmo de la hipocresía hollycapitalista, según la cual los cazas de combate y las bombas protegen a los seres humanos.

El antirazismo es otra coartada para que las masas acepten y contribuyan a las dinámicas de destrucción de las tradiciones, de las identidades, de las idiosincrasias, de las particularidades, de las diferentes culturas, razas, naciones y religiones.

La mezcla racial, cultural y religiosa está siendo uno de los mecanismos fundamentales utilizados por las élites globalistas para desestructurar profundamente y destruir el alma colectiva de los pueblos, y con ello su capacidad de resistencia.

La mezcla social, ingenierizada al más alto nivel, crea el caldo de cultivo para, en el momento necesario, canalizar el descontento de las mayorías a través de las minorías, para catalizar procesos de desestabilización, para instigar guerras civiles.



09. El transgenerismo

Se trata de una estrategia similar a la anterior, que encubre la desestructuración de las sociedades tradicionales y la destrucción de formas de vida moderadas, virtuosas, equilibradas, naturales, fértiles.

Tras la máscara de la relaciones homosexuales, bisexuales y transexuales se esconde algo tan crucial como es el socavamiento de la moral y del sentido común, la desintegración del complejo erotismo-amor-sexualidad-fertilidad-crianza.

Como en el caso del humanitarismo y del antirazismo mal entendidos, la ideología transgénero es el caballo de Troya para la destrucción de las estructuras sociales más fundamentales, que son las que mejor pueden hacer frente a la agenda distópica globalista.

En última instancia se trata de una forma de eugenesia encubierta de la que los propios ciudadanos son víctimas, en el momento en que optan «voluntariamente» a renunciar a conformar seres sociales a un tiempo naturales y culturales.

El movimiento LGBT, a pesar de ser relativamente minoritario, desempeña un papel fundamental en el conjunto de las sociedades hollycapitalistas, como vanguardia «transgresora» que sirve de referencia para el resto de las «opciones» sexuales.
 


10. El feminismo y la violencia de género

Como el movimiento transgénero, el feminismo y las campañas hollycapitalistas de violencia de género operan como vanguardias sociales, generando un gran efecto en el conjunto de la ciudadanía.

Su impacto es especialmente marcado en los niños y los jóvenes, minando las bases morales de las sociedades a largo plazo.

Suelen ser considerados formas de ingeniería social, pero lo cierto es que se basan en mecánicas propiamente religiosas y rituales, lo que refuerza aún más su capacidad para transformar profundamente a la sociedad.

Como el movimiento LGBT, con el que se producen importantes intercambios, el feminismo y la violencia de género contribuyen de manera encubierta a la desestructuración de las sociedades tradicionales, la familia, la pareja, e, insistimos, la desintegración del complejo erotismo-amor-sexualidad-fertilidad-crianza.

En última instancia contribuyen a la agenda hollycapitalista de mercantilización y apropiación de la fertilidad humana, a la transformación del ser humano en ganado-mercancía.
 


11. La cultura

La llamada «cultura», esto es, la industria del espectáculo, es uno de los elementos de dominación centrales en el hollycapitalismo.

De hay que hayamos acuñado este término de hollycapitalismo, que creemos más apropiado que los de capitalismo tardío o cognitivo. Con él nos referimos no solo a Hollywood en particular, sino a la dimensión hollywoodense que atraviesa todo el sistema.

Esta dimensión hollywoodense es también crucial para comprender los movimientos pretendidamente izquierdistas, pues remite a la misma mecánica de fondo de generar mucho ruido y mucho espectáculo pero eludir los temas importantes.
 


12. El estilo

Vinculado con el tema anterior, las falsas izquierdas suelen recurrir a todo tipo de estrategias de estilo para aparentar lo que no son, que abarcan el aspecto, la forma de vestir, el peinado, la forma de hablar, el tipo de lenguaje o términos utilizados, que tenderán a distanciarse lo más posible de los códigos conservadores o de derechas.

Los medios de desinformación explotan estas aparentes contradicciones, presentando las rastas o las camisas de cuadros de unos en contraposición a los trajes y las corbatas de otros, mientras los temas fundamentales que transformarían el statu quo se eluden.

La combatividad aparente forma parte de esta estrategia de estilo.

Pedro Bustamante.

https://www.bibliotecapleyades.net/ciencia2/ciencia_conscioussociopol267.htm

Más de 2000 estudios científicos sobre la nocividad de las vacunas.

  1. Cerebral venous thrombosis after COVID-19 vaccination in the UK: a multicentre cohort study: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01608-1/
  2. Vaccine-induced immune thrombotic thrombocytopenia with disseminated intravascular coagulation and death after ChAdOx1 nCoV-19 vaccination: https://www.sciencedirect.com/science/article/pii/S1052305721003414
  3. Fatal cerebral hemorrhage after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33928772/
  4. Myocarditis after mRNA vaccination against SARS-CoV-2, a case seCerebral venous thrombosis after COVID-19 vaccination in the UK: a multicentre cohort study: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01608-1/
  5. Vaccine-induced immune thrombotic thrombocytopenia with disseminated intravascular coagulation and death after ChAdOx1 nCoV-19 vaccination: https://www.sciencedirect.com/science/article/pii/S1052305721003414
  6. Fatal cerebral hemorrhage after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33928772/
  7. Myocarditis after mRNA vaccination against SARS-CoV-2, a case series: https://www.sciencedirect.com/science/article/pii/S2666602221000409
  8. Three cases of acute venous thromboembolism in women after vaccination against COVID-19: https://www.sciencedirect.com/science/article/pii/S2213333X21003929
  9. Acute thrombosis of the coronary tree after vaccination against COVID-19: https://www.sciencedirect.com/science/article/abs/pii/S1936879821003988
  10. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after vaccination with Ad26.COV2.S (against covid-19), March 2 to April 21, 2020: https://pubmed.ncbi.nlm.nih.gov/33929487/
  11. Portal vein thrombosis associated with ChAdOx1 nCov-19 vaccine: https://www.thelancet.com/journals/langas/article/PIIS2468-1253(21)00197-7/
  12. Management of cerebral and splanchnic vein thrombosis associated with thrombocytopenia in subjects previously vaccinated with Vaxzevria (AstraZeneca): position statement of the Italian Society for the Study of Hemostasis and Thrombosis (SISET): https://pubmed.ncbi.nlm.nih.gov/33871350/
  13. Vaccine-induced immune immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis after vaccination with COVID-19; a systematic review: https://www.sciencedirect.com/science/article/pii/S0022510X21003014
  14. Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines: https://www.sciencedirect.com/science/article/abs/pii/S0735675721004381
  15. Covid-19 vaccine-induced thrombosis and thrombocytopenia: a commentary on an important and practical clinical dilemma: https://www.sciencedirect.com/science/article/abs/pii/S0033062021000505
  16. Thrombosis with thrombocytopenia syndrome associated with COVID-19 viral vector vaccines: https://www.sciencedirect.com/science/article/abs/pii/S0953620521001904
  17. COVID-19 vaccine-induced immune-immune thrombotic thrombocytopenia: an emerging cause of splanchnic vein thrombosis: https://www.sciencedirect.com/science/article/pii/S1665268121000557
  18. The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune thrombotic immune thrombocytopenia (covid): https://www.sciencedirect.com/science/article/pii/S1050173821000967
  19. Roots of autoimmunity of thrombotic events after COVID-19 vaccination: https://www.sciencedirect.com/science/article/abs/pii/S1568997221002160
  20. Cerebral venous sinus thrombosis after vaccination: the United Kingdom experience: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01788-8/fulltext
  21. Thrombotic immune thrombocytopenia induced by SARS-CoV-2 vaccine: https://www.nejm.org/doi/full/10.1056/nejme2106315
  22. Myocarditis after immunization with COVID-19 mRNA vaccines in members of the US military. This article reports that in “23 male patients, including 22 previously healthy military members, myocarditis was identified within 4 days after receipt of the vaccine”: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601
  23. Thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://www.nejm.org/doi/full/10.1056/NEJMoa2104882?query=recirc_curatedRelated_article
  24. Association of myocarditis with the BNT162b2 messenger RNA COVID-19 vaccine in a case series of children: https://pubmed.ncbi.nlm.nih.gov/34374740/
  25. Thrombotic thrombocytopenia after vaccination with ChAdOx1 nCov-19: https://www.nejm.org/doi/full/10.1056/NEJMoa2104840?query=recirc_curatedRelated_article
  26. Post-mortem findings in vaccine-induced thrombotic thrombocytopenia (covid-19): https://haematologica.org/article/view/haematol.2021.279075
  27. Thrombocytopenia, including immune thrombocytopenia after receiving COVID-19 mRNA vaccines reported to the Vaccine Adverse Event Reporting System (VAERS): https://www.sciencedirect.com/science/article/pii/S0264410X21005247
  28. Acute symptomatic myocarditis in seven adolescents after Pfizer-BioNTech COVID-19 vaccination: https://pediatrics.aappublications.org/content/early/2021/06/04/peds.2021-052478
  29. Aphasia seven days after the second dose of an mRNA-based SARS-CoV-2 vaccine. Brain MRI revealed an intracerebral hemorrhage (ICBH) in the left temporal lobe in a 52-year-old man. https://www.sciencedirect.com/science/article/pii/S2589238X21000292#f0005
  30. Comparison of vaccine-induced thrombotic episodes between ChAdOx1 nCoV-19 and Ad26.COV.2.S vaccines: https://www.sciencedirect.com/science/article/abs/pii/S0896841121000895
  31. Hypothesis behind the very rare cases of thrombosis with thrombocytopenia syndrome after SARS-CoV-2 vaccination: https://www.sciencedirect.com/science/article/abs/pii/S0049384821003315
  32. Blood clots and bleeding episodes after BNT162b2 and ChAdOx1 nCoV-19 vaccination: analysis of European data: https://www.sciencedirect.com/science/article/pii/S0896841121000937
  33. Cerebral venous thrombosis after BNT162b2 mRNA SARS-CoV-2 vaccine: https://www.sciencedirect.com/science/article/abs/pii/S1052305721003098
  34. Primary adrenal insufficiency associated with thrombotic immune thrombocytopenia induced by the Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine (VITT): https://www.sciencedirect.com/science/article/pii/S0953620521002363
  35. Myocarditis and pericarditis after vaccination with COVID-19 mRNA: practical considerations for care providers: https://www.sciencedirect.com/science/article/pii/S0828282X21006243
  36. “Portal vein thrombosis occurring after the first dose of SARS-CoV-2 mRNA vaccine in a patient with antiphospholipid syndrome”: https://www.sciencedirect.com/science/article/pii/S2666572721000389
  37. Early results of bivalirudin treatment for thrombotic thrombocytopenia and cerebral venous sinus thrombosis after vaccination with Ad26.COV2.S: https://www.sciencedirect.com/science/article/pii/S0196064421003425
  38. Myocarditis, pericarditis and cardiomyopathy after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S1443950621011562
  39. Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection: https://www.sciencedirect.com/science/article/abs/pii/S0896841121000706
  40. Prothrombotic immune thrombocytopenia after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0006497121009411
  41. Vaccine-induced thrombotic thrombocytopenia: the dark chapter of a success story: https://www.sciencedirect.com/science/article/pii/S2589936821000256
  42. Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in a non-comorbid elderly Indian male treated with conventional heparin-warfarin based anticoagulation: https://www.sciencedirect.com/science/article/pii/S1871402121002046
  43. Thrombosis after COVID-19 vaccination: possible link to ACE pathways: https://www.sciencedirect.com/science/article/pii/S0049384821004369
  44. Cerebral venous sinus thrombosis in the U.S. population after SARS-CoV-2 vaccination with adenovirus and after COVID-19: https://www.sciencedirect.com/science/article/pii/S0735109721051949
  45. A rare case of a middle-aged Asian male with cerebral venous thrombosis after AstraZeneca COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0735675721005714
  46. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination: report of two cases in the United Kingdom: https://www.sciencedirect.com/science/article/abs/pii/S088915912100163X
  47. Immune thrombocytopenic purpura after vaccination with COVID-19 vaccine (ChAdOx1 nCov-19): https://www.sciencedirect.com/science/article/abs/pii/S0006497121013963.
  48. Antiphospholipid antibodies and risk of thrombophilia after COVID-19 vaccination: the straw that breaks the camel’s back?: https://docs.google.com/document/d/1XzajasO8VMMnC3CdxSBKks1o7kiOLXFQ
  49. Vaccine-induced thrombotic thrombocytopenia, a rare but severe case of friendly fire in the battle against the COVID-19 pandemic: What pathogenesis?: https://www.sciencedirect.com/science/article/pii/S0953620521002314
  50. Diagnostic-therapeutic recommendations of the ad-hoc FACME expert working group on the management of cerebral venous thrombosis related to COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0213485321000839
  51. Thrombocytopenia and intracranial venous sinus thrombosis after exposure to the “AstraZeneca COVID-19 vaccine”: https://pubmed.ncbi.nlm.nih.gov/33918932/
  52. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33606296/
  53. Severe and refractory immune thrombocytopenia occurring after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33854395/
  54. Purpuric rash and thrombocytopenia after mRNA-1273 (Modern) COVID-19 vaccine: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996471/
  55. COVID-19 vaccination: information on the occurrence of arterial and venous thrombosis using data from VigiBase: https://pubmed.ncbi.nlm.nih.gov/33863748/
  56. Cerebral venous thrombosis associated with the covid-19 vaccine in Germany: https://onlinelibrary.wiley.com/doi/10.1002/ana.26172
  57. Cerebral venous thrombosis following BNT162b2 mRNA vaccination of BNT162b2 against SARS-CoV-2: a black swan event: https://pubmed.ncbi.nlm.nih.gov/34133027/
  58. The importance of recognizing cerebral venous thrombosis following anti-COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34001390/
  59. Thrombosis with thrombocytopenia after messenger RNA vaccine -1273: https://pubmed.ncbi.nlm.nih.gov/34181446/
  60. Blood clots and bleeding after BNT162b2 and ChAdOx1 nCoV-19 vaccination: an analysis of European data: https://pubmed.ncbi.nlm.nih.gov/34174723/
  61. First dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic, and hemorrhagic events in Scotland: https://www.nature.com/articles/s41591-021-01408-4
  62. Exacerbation of immune thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34075578/
  63. First report of a de novo iTTP episode associated with a COVID-19 mRNA-based anti-COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34105244/
  64. PF4 immunoassays in vaccine-induced thrombotic thrombocytopenia: https://www.nejm.org/doi/full/10.1056/NEJMc2106383
  65. Antibody epitopes in vaccine-induced immune immune thrombotic thrombocytopenia: https://www.nature.com/articles/s41586-021-03744-4
  66. Myocarditis with COVID-19 mRNA vaccines: https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.121.056135
  67. Myocarditis and pericarditis after COVID-19 vaccination: https://jamanetwork.com/journals/jama/fullarticle/2782900
  68. Myocarditis temporally associated with COVID-19 vaccination: https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.121.055891.
  69. COVID-19 Vaccination Associated with Myocarditis in Adolescents: https://pediatrics.aappublications.org/content/pediatrics/early/2021/08/12/peds.2021-053427.full.pdf
  70. Acute myocarditis after administration of BNT162b2 vaccine against COVID-19: https://pubmed.ncbi.nlm.nih.gov/33994339/
  71. Temporal association between COVID-19 vaccine Ad26.COV2.S and acute myocarditis: case report and review of the literature: https://www.sciencedirect.com/science/article/pii/S1553838921005789
  72. COVID-19 vaccine-induced myocarditis: a case report with review of the literature: https://www.sciencedirect.com/science/article/pii/S1871402121002253
  73. Potential association between COVID-19 vaccine and myocarditis: clinical and CMR findings: https://www.sciencedirect.com/science/article/pii/S1936878X2100485X
  74. Recurrence of acute myocarditis temporally associated with receipt of coronavirus mRNA disease vaccine 2019 (COVID-19) in a male adolescent: https://www.sciencedirect.com/science/article/pii/S002234762100617X
  75. Fulminant myocarditis and systemic hyper inflammation temporally associated with BNT162b2 COVID-19 mRNA vaccination in two patients: https://www.sciencedirect.com/science/article/pii/S0167527321012286.
  76. Acute myocarditis after administration of BNT162b2 vaccine: https://www.sciencedirect.com/science/article/pii/S2214250921001530
  77. Lymphohistocytic myocarditis after vaccination with COVID-19 Ad26.COV2.S viral vector: https://www.sciencedirect.com/science/article/pii/S2352906721001573
  78. Myocarditis following vaccination with BNT162b2 in a healthy male: https://www.sciencedirect.com/science/article/pii/S0735675721005362
  79. Acute myocarditis after Comirnaty (Pfizer) vaccination in a healthy male with previous SARS-CoV-2 infection: https://www.sciencedirect.com/science/article/pii/S1930043321005549
  80. Myopericarditis after Pfizer mRNA COVID-19 vaccination in adolescents: https://www.sciencedirect.com/science/article/pii/S002234762100665X
  81. Pericarditis after administration of BNT162b2 mRNA COVID-19 mRNA vaccine: https://www.sciencedirect.com/science/article/pii/S1885585721002218
  82. Acute myocarditis after vaccination with SARS-CoV-2 mRNA-1273 mRNA: https://www.sciencedirect.com/science/article/pii/S2589790X21001931
  83. Temporal relationship between the second dose of BNT162b2 mRNA Covid-19 vaccine and cardiac involvement in a patient with previous SARS-COV-2 infection: https://www.sciencedirect.com/science/article/pii/S2352906721000622
  84. Myopericarditis after vaccination with COVID-19 mRNA in adolescents 12 to 18 years of age: https://www.sciencedirect.com/science/article/pii/S0022347621007368
  85. Acute myocarditis after SARS-CoV-2 vaccination in a 24-year-old man: https://www.sciencedirect.com/science/article/pii/S0870255121003243
  86. Important information on myopericarditis after vaccination with Pfizer COVID-19 mRNA in adolescents: https://www.sciencedirect.com/science/article/pii/S0022347621007496
  87. A series of patients with myocarditis after vaccination against SARS-CoV-2 with mRNA-1279 and BNT162b2: https://www.sciencedirect.com/science/article/pii/S1936878X21004861
  88. Takotsubo cardiomyopathy after vaccination with mRNA COVID-19: https://www.sciencedirect.com/science/article/pii/S1443950621011331
  89. COVID-19 mRNA vaccination and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34268277/
  90. COVID-19 vaccine and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34399967/
  91. Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resourc e/en/covidwho-1360706.
  92. COVID-19 vaccines and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34246566/
  93. Myocarditis and other cardiovascular complications of COVID-19 mRNA-based COVID-19 vaccines https://www.cureus.com/articles/61030-myocarditis-and-other-cardiovascular-comp lications-of-the-mrna-based-covid-19-vaccines https://www.cureus.com/articles/61030-myocarditis-and-other-cardiovascular-complications-of-the-mrna-based-covid-19-vaccines
  94. Myocarditis, pericarditis, and cardiomyopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34340927/
  95. Myocarditis with covid-19 mRNA vaccines: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056135
  96. Association of myocarditis with COVID-19 mRNA vaccine in children: https://media.jamanetwork.com/news-item/association-of-myocarditis-with-mrna-co vid-19-vaccine-in-children/
  97. Association of myocarditis with COVID-19 messenger RNA vaccine BNT162b2 in a case series of children: https://jamanetwork.com/journals/jamacardiology/fullarticle/2783052
  98. Myocarditis after immunization with COVID-19 mRNA vaccines in members of the U.S. military: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601%5C
  99. Myocarditis occurring after immunization with COVID-19 mRNA-based COVID-19 vaccines: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781600
  100. Myocarditis following immunization with Covid-19 mRNA: https://www.nejm.org/doi/full/10.1056/NEJMc2109975
  101. Patients with acute myocarditis after vaccination withCOVID-19 mRNA: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781602
  102. Myocarditis associated with vaccination with COVID-19 mRNA: https://pubs.rsna.org/doi/10.1148/radiol.2021211430
  103. Symptomatic Acute Myocarditis in 7 Adolescents after Pfizer-BioNTech COVID-19 Vaccination: https://pediatrics.aappublications.org/content/148/3/e2021052478
  104. Cardiovascular magnetic resonance imaging findings in young adult patients with acute myocarditis after COVID-19 mRNA vaccination: a case series: https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-021-00795-4
  105. Clinical Guidance for Young People with Myocarditis and Pericarditis after Vaccination with COVID-19 mRNA: https://www.cps.ca/en/documents/position/clinical-guidance-for-youth-with-myocarditis-and-pericarditis
  106. Cardiac imaging of acute myocarditis after vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34402228/
  107. Case report: acute myocarditis after second dose of mRNA-1273 SARS-CoV-2 mRNA vaccine: https://academic.oup.com/ehjcr/article/5/8/ytab319/6339567
  108. Myocarditis / pericarditis associated with COVID-19 vaccine: https://science.gc.ca/eic/site/063.nsf/eng/h_98291.html
  109. Transient cardiac injury in adolescents receiving the BNT162b2 mRNA COVID-19 vaccine: https://journals.lww.com/pidj/Abstract/9000/Transient_Cardiac_Injury_in_Adolesce nts_Receiving.95800.aspx
  110. Perimyocarditis in adolescents after Pfizer-BioNTech COVID-19 vaccine: https://academic.oup.com/jpids/advance-article/doi/10.1093/jpids/piab060/6329543
  111. The new COVID-19 mRNA vaccine platform and myocarditis: clues to the possible underlying mechanism: https://pubmed.ncbi.nlm.nih.gov/34312010/
  112. Acute myocardial injury after COVID-19 vaccination: a case report and review of current evidence from the Vaccine Adverse Event Reporting System database: https://pubmed.ncbi.nlm.nih.gov/34219532/
  113. Be alert to the risk of adverse cardiovascular events after COVID-19 vaccination: https://www.xiahepublishing.com/m/2472-0712/ERHM-2021-00033
  114. Myocarditis associated with COVID-19 vaccination: echocardiographic, cardiac tomography, and magnetic resonance imaging findings: https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.121.013236
  115. In-depth evaluation of a case of presumed myocarditis after the second dose of COVID-19 mRNA vaccine: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056038
  116. Occurrence of acute infarct-like myocarditis after COVID-19 vaccination: just an accidental coincidence or rather a vaccination-associated autoimmune myocarditis?: https://pubmed.ncbi.nlm.nih.gov/34333695/
  117. Recurrence of acute myocarditis temporally associated with receipt of coronavirus mRNA disease vaccine 2019 (COVID-19) in a male adolescent: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216855/
  118. Myocarditis after SARS-CoV-2 vaccination: a vaccine-induced reaction?: https://pubmed.ncbi.nlm.nih.gov/34118375/
  119. Self-limited myocarditis presenting with chest pain and ST-segment elevation in adolescents after vaccination with the BNT162b2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34180390/
  120. Myopericarditis in a previously healthy adolescent male after COVID-19 vaccination: Case report: https://pubmed.ncbi.nlm.nih.gov/34133825/
  121. Biopsy-proven lymphocytic myocarditis after first COVID-19 mRNA vaccination in a 40-year-old man: case report: https://pubmed.ncbi.nlm.nih.gov/34487236/
  122. Insights from a murine model of COVID-19 mRNA vaccine-induced myopericarditis: could accidental intravenous injection of a vaccine induce myopericarditis https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab741/6359059
  123. Unusual presentation of acute perimyocarditis after modern SARS-COV-2 mRNA-1237 vaccination: https://pubmed.ncbi.nlm.nih.gov/34447639/
  124. Perimyocarditis after the first dose of mRNA-1273 SARS-CoV-2 (Modern) mRNA-1273 vaccine in a young healthy male: case report: https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-021-02183
  125. Acute myocarditis after the second dose of SARS-CoV-2 vaccine: serendipity or causal relationship: https://pubmed.ncbi.nlm.nih.gov/34236331/
  126. Rhabdomyolysis and fasciitis induced by the COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34435250/
  127. COVID-19 vaccine-induced rhabdomyolysis: case report with literature review: https://pubmed.ncbi.nlm.nih.gov/34186348/.
  128. GM1 ganglioside antibody and COVID-19-related Guillain Barre syndrome: case report, systemic review, and implications for vaccine development: https://www.sciencedirect.com/science/article/pii/S2666354621000065
  129. Guillain-Barré syndrome after AstraZeneca COVID-19 vaccination: causal or casual association: https://www.sciencedirect.com/science/article/pii/S0303846721004169
  130. Sensory Guillain-Barré syndrome after ChAdOx1 nCov-19 vaccine: report of two cases and review of the literature: https://www.sciencedirect.com/science/article/pii/S0165572821002186
  131. Guillain-Barré syndrome after the first dose of SARS-CoV-2 vaccine: a temporary occurrence, not a causal association: https://www.sciencedirect.com/science/article/pii/S2214250921000998.
  132. Guillain-Barré syndrome presenting as facial diplegia after vaccination with COVID-19: a case report: https://www.sciencedirect.com/science/article/pii/S0736467921006442
  133. Guillain-Barré syndrome after the first injection of ChAdOx1 nCoV-19 vaccine: first report: https://www.sciencedirect.com/science/article/pii/S0035378721005853.
  134. SARS-CoV-2 vaccines are not safe for those with Guillain-Barre syndrome following vaccination: https://www.sciencedirect.com/science/article/pii/S2049080121005343
  135. Acute hyperactive encephalopathy following COVID-19 vaccination with dramatic response to methylprednisolone: a case report: https://www.sciencedirect.com/science/article/pii/S2049080121007536
  136. Facial nerve palsy following administration of COVID-19 mRNA vaccines: analysis of self-report database: https://www.sciencedirect.com/science/article/pii/S1201971221007049
  137. Neurological symptoms and neuroimaging alterations related to COVID-19 vaccine: cause or coincidence: https://www.sciencedirect.com/science/article/pii/S0899707121003557.
  138. New-onset refractory status epilepticus after ChAdOx1 nCoV-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0165572821001569
  139. Acute myelitis and ChAdOx1 nCoV-19 vaccine: coincidental or causal association: https://www.sciencedirect.com/science/article/pii/S0165572821002137
  140. Bell’s palsy and SARS-CoV-2 vaccines: an unfolding story: https://www.sciencedirect.com/science/article/pii/S1473309921002735
  141. Bell’s palsy after the second dose of the Pfizer COVID-19 vaccine in a patient with a history of recurrent Bell’s palsy: https://www.sciencedirect.com/science/article/pii/S266635462100020X
  142. Acute-onset central serous retinopathy after immunization with COVID-19 mRNA vaccine:. https://www.sciencedirect.com/science/article/pii/S2451993621001456.
  143. Bell’s palsy after COVID-19 vaccination: case report: https://www.sciencedirect.com/science/article/pii/S217358082100122X.
  144. An academic hospital experience assessing the risk of COVID-19 mRNA vaccine using patient’s allergy history: https://www.sciencedirect.com/science/article/pii/S2213219821007972
  145. COVID-19 vaccine-induced axillary and pectoral lymphadenopathy in PET: https://www.sciencedirect.com/science/article/pii/S1930043321002612
  146. ANCA-associated vasculitis after Pfizer-BioNTech COVID-19 vaccine: https://www.sciencedirect.com/science/article/pii/S0272638621007423
  147. Late cutaneous reactions after administration of COVID-19 mRNA vaccines: https://www.sciencedirect.com/science/article/pii/S2213219821007996
  148. COVID-19 vaccine-induced rhabdomyolysis: case report with review of the literature: https://www.sciencedirect.com/science/article/pii/S1871402121001880
  149. Clinical and pathologic correlates of skin reactions to COVID-19 vaccine, including V-REPP: a registry-based study: https://www.sciencedirect.com/science/article/pii/S0190962221024427
  150. Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines:. https://www.sciencedirect.com/science/article/abs/pii/S0735675721004381.
  151. COVID-19 vaccine-associated anaphylaxis: a statement from the Anaphylaxis Committee of the World Allergy Organization:. https://www.sciencedirect.com/science/article/pii/S1939455121000119.
  152. Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in an elderly, non-comorbid Indian male treated with conventional heparin-warfarin-based anticoagulation:. https://www.sciencedirect.com/science/article/pii/S1871402121002046.
  153. Acute myocarditis after administration of BNT162b2 vaccine against COVID-19:. https://www.sciencedirect.com/science/article/abs/pii/S188558572100133X
  154. Blood clots and bleeding after BNT162b2 and ChAdOx1 nCoV-19 vaccine: an analysis of European data:. https://www.sciencedirect.com/science/article/pii/S0896841121000937.
  155. immune thrombocytopenia associated with Pfizer-BioNTech’s COVID-19 BNT162b2 mRNA vaccine:. https://www.sciencedirect.com/science/article/pii/S2214250921002018.
  156. Bullous drug eruption after the second dose of COVID-19 mRNA-1273 (Moderna) vaccine: Case report: https://www.sciencedirect.com/science/article/pii/S1876034121001878.
  157. COVID-19 RNA-based vaccines and the risk of prion disease: https://scivisionpub.com/pdfs/covid19rna-based-vaccines-and-the-risk-of-prion-dis ease-1503.pdf
  158. This study notes that 115 pregnant women lost their babies, out of 827 who participated in a study on the safety of covid-19 vaccines: https://www.nejm.org/doi/full/10.1056/NEJMoa2104983.
  159. Process-related impurities in the ChAdOx1 nCov-19 vaccine: https://www.researchsquare.com/article/rs-477964/v1
  160. COVID-19 mRNA vaccine causing CNS inflammation: a case series: https://link.springer.com/article/10.1007/s00415-021-10780-7
  161. Allergic reactions, including anaphylaxis, after receiving the first dose of the Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33475702/
  162. Allergic reactions to the first COVID-19 vaccine: a potential role of polyethylene glycol: https://pubmed.ncbi.nlm.nih.gov/33320974/
  163. Pfizer Vaccine Raises Allergy Concerns: https://pubmed.ncbi.nlm.nih.gov/33384356/
  164. Allergic reactions, including anaphylaxis, after receiving the first dose of Pfizer-BioNTech COVID-19 vaccine – United States, December 14-23, 2020: https://pubmed.ncbi.nlm.nih.gov/33444297/
  165. Allergic reactions, including anaphylaxis, after receiving first dose of Modern COVID-19 vaccine – United States, December 21, 2020-January 10, 2021: https://pubmed.ncbi.nlm.nih.gov/33507892/
  166. Reports of anaphylaxis after coronavirus disease vaccination 2019, South Korea, February 26-April 30, 2021: https://pubmed.ncbi.nlm.nih.gov/34414880/
  167. Reports of anaphylaxis after receiving COVID-19 mRNA vaccines in the U.S.-Dec 14, 2020-Jan 18, 2021: https://pubmed.ncbi.nlm.nih.gov/33576785/
  168. Immunization practices and risk of anaphylaxis: a current, comprehensive update of COVID-19 vaccination data: https://pubmed.ncbi.nlm.nih.gov/34269740/
  169. Relationship between pre-existing allergies and anaphylactic reactions following administration of COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34215453/
  170. Anaphylaxis Associated with COVID-19 mRNA Vaccines: Approach to Allergy Research: https://pubmed.ncbi.nlm.nih.gov/33932618/
  171. Severe Allergic Reactions after COVID-19 Vaccination with the Pfizer / BioNTech Vaccine in Great Britain and the USA: Position Statement of the German Allergy Societies: German Medical Association of Allergologists (AeDA), German Society for Allergology and Clinical Immunology (DGAKI) and Society for Pediatric Allergology and Environmental Medicine (GPA): https://pubmed.ncbi.nlm.nih.gov/33643776/
  172. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/33571463/
  173. Reported orofacial adverse effects from COVID-19 vaccines: the known and the unknown: https://pubmed.ncbi.nlm.nih.gov/33527524/
  174. Cutaneous adverse effects of available COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34518015/
  175. Cumulative adverse event report of anaphylaxis following injections of COVID-19 mRNA vaccine (Pfizer-BioNTech) in Japan: the first month report: https://pubmed.ncbi.nlm.nih.gov/34347278/
  176. COVID-19 vaccines increase the risk of anaphylaxis: https://pubmed.ncbi.nlm.nih.gov/33685103/
  177. Biphasic anaphylaxis after exposure to the first dose of the Pfizer-BioNTech COVID-19 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34050949/
  178. Allergenic components of the mRNA-1273 vaccine for COVID-19: possible involvement of polyethylene glycol and IgG-mediated complement activation: https://pubmed.ncbi.nlm.nih.gov/33657648/
  179. Polyethylene glycol (PEG) is a cause of anaphylaxis to Pfizer / BioNTech mRNA COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33825239/
  180. Acute allergic reactions to COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/33683290/
  181. Polyethylene glycole allergy of the SARS CoV2 vaccine recipient: case report of a young adult recipient and management of future exposure to SARS-CoV2: https://pubmed.ncbi.nlm.nih.gov/33919151/
  182. Elevated rates of anaphylaxis after vaccination with Pfizer BNT162b2 mRNA vaccine against COVID-19 in Japanese healthcare workers; a secondary analysis of initial post-approval safety data: https://pubmed.ncbi.nlm.nih.gov/34128049/
  183. Allergic reactions and adverse events associated with administration of mRNA-based vaccines. A health system experience: https://pubmed.ncbi.nlm.nih.gov/34474708/
  184. Allergic reactions to COVID-19 vaccines: statement of the Belgian Society of Allergy and Clinical Immunology (BelSACI): https://www.tandfonline.com/doi/abs/10.1080/17843286.2021.1909447
  185. .IgE-mediated allergy to polyethylene glycol (PEG) as a cause of anaphylaxis to COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34318537/
  186. Allergic reactions after COVID-19 vaccination: putting the risk in perspective: https://pubmed.ncbi.nlm.nih.gov/34463751/
  187. Anaphylactic reactions to COVID-19 mRNA vaccines: a call for further studies: https://pubmed.ncbi.nlm.nih.gov/33846043/ 188.
  188. Risk of severe allergic reactions to COVID-19 vaccines among patients with allergic skin disease: practical recommendations. An ETFAD position statement with external experts: https://pubmed.ncbi.nlm.nih.gov/33752263/
  189. COVID-19 vaccine and death: causality algorithm according to the WHO eligibility diagnosis: https://pubmed.ncbi.nlm.nih.gov/34073536/
  190. Fatal brain hemorrhage after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33928772/
  191. A case series of skin reactions to COVID-19 vaccine in the Department of Dermatology at Loma Linda University: https://pubmed.ncbi.nlm.nih.gov/34423106/
  192. Skin reactions reported after Moderna and Pfizer’s COVID-19 vaccination: a study based on a registry of 414 cases: https://pubmed.ncbi.nlm.nih.gov/33838206/
  193. Clinical and pathologic correlates of skin reactions to COVID-19 vaccine, including V-REPP: a registry-based study: https://pubmed.ncbi.nlm.nih.gov/34517079/
  194. Skin reactions after vaccination against SARS-COV-2: a nationwide Spanish cross-sectional study of 405 cases: https://pubmed.ncbi.nlm.nih.gov/34254291/
  195. Varicella zoster virus and herpes simplex virus reactivation after vaccination with COVID-19: review of 40 cases in an international dermatologic registry: https://pubmed.ncbi.nlm.nih.gov/34487581/
  196. Immune thrombosis and thrombocytopenia (VITT) associated with the COVID-19 vaccine: diagnostic and therapeutic recommendations for a new syndrome: https://pubmed.ncbi.nlm.nih.gov/33987882/
  197. Laboratory testing for suspicion of COVID-19 vaccine-induced thrombotic (immune) thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34138513/
  198. Intracerebral hemorrhage due to thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: the first fatal case in Korea: https://pubmed.ncbi.nlm.nih.gov/34402235/
  199. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and positive SARS-CoV-2 tests: self-controlled case series study: https://pubmed.ncbi.nlm.nih.gov/34446426/
  200. Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis after covid-19 vaccination; a systematic review: https://pubmed.ncbi.nlm.nih.gov/34365148/.
  201. Nerve and muscle adverse events after vaccination with COVID-19: a systematic review and meta-analysis of clinical trials: https://pubmed.ncbi.nlm.nih.gov/34452064/.
  202. A rare case of cerebral venous thrombosis and disseminated intravascular coagulation temporally associated with administration of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33917902/
  203. Primary adrenal insufficiency associated with thrombotic immune thrombocytopenia induced by Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine (VITT): https://pubmed.ncbi.nlm.nih.gov/34256983/
  204. Acute cerebral venous thrombosis and pulmonary artery embolism associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34247246/.
  205. Thromboaspiration infusion and fibrinolysis for portomesenteric thrombosis after administration of AstraZeneca COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34132839/
  206. 59-year-old woman with extensive deep venous thrombosis and pulmonary thromboembolism 7 days after a first dose of Pfizer-BioNTech BNT162b2 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34117206/
  207. Cerebral venous thrombosis and vaccine-induced thrombocytopenia.a. Oxford-AstraZeneca COVID-19: a missed opportunity for a rapid return on experience: https://pubmed.ncbi.nlm.nih.gov/34033927/
  208. Myocarditis and other cardiovascular complications of mRNA-based COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34277198/
  209. Pericarditis after administration of COVID-19 mRNA BNT162b2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34364831/
  210. Unusual presentation of acute pericarditis after vaccination against SARS-COV-2 mRNA-1237 Modern: https://pubmed.ncbi.nlm.nih.gov/34447639/
  211. Case report: acute myocarditis after second dose of SARS-CoV-2 mRNA-1273 vaccine mRNA-1273: https://pubmed.ncbi.nlm.nih.gov/34514306/
  212. Immune-mediated disease outbreaks or recent-onset disease in 27 subjects after mRNA/DNA vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/33946748/
  213. Insights from a murine model of myopericarditis induced by COVID-19 mRNA vaccine: could accidental intravenous injection of a vaccine induce myopericarditis: https://pubmed.ncbi.nlm.nih.gov/34453510/
  214. Immune thrombocytopenia in a 22-year-old post Covid-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33476455/
  215. propylthiouracil-induced neutrophil anti-cytoplasmic antibody-associated vasculitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34451967/
  216. Secondary immune thrombocytopenia (ITP) associated with ChAdOx1 Covid-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34377889/
  217. Thrombosis with thrombocytopenia syndrome (TTS) following AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19 vaccination: risk-benefit analysis for persons <60 years in Australia: https://pubmed.ncbi.nlm.nih.gov/34272095/
  218. COVID-19 vaccination association and facial nerve palsy: A case-control study: https://pubmed.ncbi.nlm.nih.gov/34165512/
  219. The association between COVID-19 vaccination and Bell’s palsy: https://pubmed.ncbi.nlm.nih.gov/34411533/
  220. Bell’s palsy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33611630/
  221. Acute transverse myelitis (ATM): clinical review of 43 patients with COVID-19-associated ATM and 3 serious adverse events of post-vaccination ATM with ChAdOx1 nCoV-19 vaccine (AZD1222): https://pubmed.ncbi.nlm.nih.gov/33981305/
  222. Bell’s palsy after 24 hours of mRNA-1273 SARS-CoV-2 mRNA-1273 vaccine: https://pubmed.ncbi.nlm.nih.gov/34336436/
  223. Sequential contralateral facial nerve palsy after first and second doses of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34281950/.
  224. Transverse myelitis induced by SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34458035/
  225. Peripheral facial nerve palsy after vaccination with BNT162b2 (COVID-19): https://pubmed.ncbi.nlm.nih.gov/33734623/
  226. Acute abducens nerve palsy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34044114/.
  227. Facial nerve palsy after administration of COVID-19 mRNA vaccines: analysis of self-report database: https://pubmed.ncbi.nlm.nih.gov/34492394/
  228. Transient oculomotor paralysis after administration of RNA-1273 messenger vaccine for SARS-CoV-2 diplopia after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34369471/
  229. Bell’s palsy after Ad26.COV2.S COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34014316/
  230. Bell’s palsy after COVID-19 vaccination: case report: https://pubmed.ncbi.nlm.nih.gov/34330676/
  231. A case of acute demyelinating polyradiculoneuropathy with bilateral facial palsy following ChAdOx1 nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34272622/
  232. Guillian Barré syndrome after vaccination with mRNA-1273 against COVID-19: https://pubmed.ncbi.nlm.nih.gov/34477091/
  233. Acute facial paralysis as a possible complication of SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33975372/.
  234. Bell’s palsy after COVID-19 vaccination with high antibody response in CSF: https://pubmed.ncbi.nlm.nih.gov/34322761/.
  235. Parsonage-Turner syndrome associated with SARS-CoV-2 or SARS-CoV-2 vaccination. Comment on: “Neuralgic amyotrophy and COVID-19 infection: 2 cases of accessory spinal nerve palsy” by Coll et al. Articular Spine 2021; 88: 10519: https://pubmed.ncbi.nlm.nih.gov/34139321/.
  236. Bell’s palsy after a single dose of vaccine mRNA. SARS-CoV-2: case report: https://pubmed.ncbi.nlm.nih.gov/34032902/.
  237. Autoimmune hepatitis developing after coronavirus disease vaccine 2019 (COVID-19): causality or victim?: https://pubmed.ncbi.nlm.nih.gov/33862041/
  238. Autoimmune hepatitis triggered by vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34332438/
  239. Acute autoimmune-like hepatitis with atypical antimitochondrial antibody after vaccination with COVID-19 mRNA: a new clinical entity: https://pubmed.ncbi.nlm.nih.gov/34293683/.
  240. Autoimmune hepatitis after COVID vaccine: https://pubmed.ncbi.nlm.nih.gov/34225251/
  241. A novel case of bifacial diplegia variant of Guillain-Barré syndrome after vaccination with Janssen COVID-19: https://pubmed.ncbi.nlm.nih.gov/34449715/
  242. Comparison of vaccine-induced thrombotic events between ChAdOx1 nCoV-19 and Ad26.COV.2.S vaccines: https://pubmed.ncbi.nlm.nih.gov/34139631/.
  243. Bilateral superior ophthalmic vein thrombosis, ischemic stroke and immune thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/33864750/
  244. Diagnosis and treatment of cerebral venous sinus thrombosis with vaccine-induced immune-immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/33914590/
  245. Venous sinus thrombosis after vaccination with ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34420802/
  246. Cerebral venous sinus thrombosis following vaccination against SARS-CoV-2: an analysis of cases reported to the European Medicines Agency: https://pubmed.ncbi.nlm.nih.gov/34293217/
  247. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and positive SARS-CoV-2 tests: self-controlled case series study: https://pubmed.ncbi.nlm.nih.gov/34446426/
  248. Blood clots and bleeding after BNT162b2 and ChAdOx1 nCoV-19 vaccination: an analysis of European data: https://pubmed.ncbi.nlm.nih.gov/34174723/
  249. Arterial events, venous thromboembolism, thrombocytopenia and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/33952445/
  250. First dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland: https://pubmed.ncbi.nlm.nih.gov/34108714/
  251. Cerebral venous thrombosis associated with COVID-19 vaccine in Germany: https://pubmed.ncbi.nlm.nih.gov/34288044/
  252. Malignant cerebral infarction after vaccination with ChAdOx1 nCov-19: a catastrophic variant of vaccine-induced immune-mediated thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34341358/
  253. celiac artery and splenic artery thrombosis complicated by splenic infarction 7 days after the first dose of Oxford vaccine, causal relationship or coincidence: https://pubmed.ncbi.nlm.nih.gov/34261633/.
  254. Primary adrenal insufficiency associated with Oxford-AstraZeneca ChAdOx1 nCoV-19 (VITT) vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34256983/
  255. Thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34332437/.
  256. Cerebral venous sinus thrombosis associated with thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33845870/.
  257. Thrombosis with thrombocytopenia syndrome after COVID-19 immunization: https://pubmed.ncbi.nlm.nih.gov/34236343/
  258. Acute myocardial infarction within 24 hours after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34364657/.
  259. Bilateral acute macular neuroretinopathy after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34287612/
  260. central venous sinus thrombosis with subarachnoid hemorrhage after COVID-19 mRNA vaccination: are these reports merely coincidental: https://pubmed.ncbi.nlm.nih.gov/34478433/
  261. Intracerebral hemorrhage due to thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: the first fatal case in Korea: https://pubmed.ncbi.nlm.nih.gov/34402235/
  262. Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in a non-comorbid elderly Indian male treated with conventional heparin-warfarin-based anticoagulation: https://pubmed.ncbi.nlm.nih.gov/34186376/
  263. Cerebral venous sinus thrombosis 2 weeks after first dose of SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34101024/
  264. A case of multiple thrombocytopenia and thrombosis following vaccination with ChAdOx1 nCoV-19 against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34137813/
  265. Vaccine-induced thrombotic thrombocytopenia: the elusive link between thrombosis and adenovirus-based SARS-CoV-2 vaccines: https://pubmed.ncbi.nlm.nih.gov/34191218/
  266. Acute ischemic stroke revealing immune thrombotic thrombocytopenia induced by ChAdOx1 nCov-19 vaccine: impact on recanalization strategy: https://pubmed.ncbi.nlm.nih.gov/34175640/
  267. New-onset refractory status epilepticus after ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34153802/
  268. Thrombosis with thrombocytopenia syndrome associated with COVID-19 viral vector vaccines: https://pubmed.ncbi.nlm.nih.gov/34092488/
  269. Pulmonary embolism, transient ischemic attack, and thrombocytopenia after Johnson & Johnson COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34261635/
  270. Thromboaspiration infusion and fibrinolysis for portomesenteric thrombosis after administration of the AstraZeneca COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34132839/.
  271. Spontaneous HIT syndrome: knee replacement, infection, and parallels with vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34144250/
  272. Deep venous thrombosis (DVT) occurring shortly after second dose of SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/33687691/
  273. Procoagulant antibody-mediated procoagulant platelets in immune thrombotic thrombocytopenia associated with SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34011137/.
  274. Vaccine-induced immune thrombotic thrombocytopenia causing a severe form of cerebral venous thrombosis with high mortality rate: a case series: https://pubmed.ncbi.nlm.nih.gov/34393988/.
  275. Procoagulant microparticles: a possible link between vaccine-induced immune thrombocytopenia (VITT) and cerebral sinus venous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34129181/.
  276. Atypical thrombosis associated with the vaccine VaxZevria® (AstraZeneca): data from the French network of regional pharmacovigilance centers: https://pubmed.ncbi.nlm.nih.gov/34083026/.
  277. Acute cerebral venous thrombosis and pulmonary artery embolism associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34247246/.
  278. Vaccine-induced thrombosis and thrombocytopenia with bilateral adrenal haemorrhage: https://pubmed.ncbi.nlm.nih.gov/34235757/.
  279. Palmar digital vein thrombosis after Oxford-AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34473841/.
  280. Cutaneous thrombosis associated with cutaneous necrosis following Oxford-AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34189756/
  281. Cerebral venous thrombosis following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34045111/.
  282. Lipschütz ulcers after AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34366434/.
  283. Amyotrophic Neuralgia secondary to Vaxzevri vaccine (AstraZeneca) COVID-19: https://pubmed.ncbi.nlm.nih.gov/34330677/
  284. Thrombosis with thrombocytopenia after Messenger vaccine RNA-1273: https://pubmed.ncbi.nlm.nih.gov/34181446/
  285. Intracerebral hemorrhage twelve days after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34477089/
  286. Thrombotic thrombocytopenia after vaccination with COVID-19: in search of the underlying mechanism: https://pubmed.ncbi.nlm.nih.gov/34071883/
  287. Coronavirus (COVID-19) Vaccine-induced immune thrombotic thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34033367/
  288. Comparison of adverse drug reactions among four COVID-19 vaccines in Europe using the EudraVigilance database: Thrombosis in unusual sites: https://pubmed.ncbi.nlm.nih.gov/34375510/
  289. Immunoglobulin adjuvant for vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34107198/
  290. Severe vaccine-induced thrombotic thrombocytopenia following vaccination with COVID-19: an autopsy case report and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34355379/.
  291. A case of acute pulmonary embolism after immunization with SARS-CoV-2 mRNA: https://pubmed.ncbi.nlm.nih.gov/34452028/
  292. Neurosurgical considerations regarding decompressive craniectomy for intracerebral hemorrhage after SARS-CoV-2 vaccination in vaccine-induced thrombotic thrombocytopenia-VITT: https://pubmed.ncbi.nlm.nih.gov/34202817/
  293. Thrombosis and SARS-CoV-2 vaccines: vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34237213/.
  294. Acquired thrombotic thrombocytopenic thrombocytopenic purpura: a rare disease associated with the BNT162b2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34105247/.
  295. Immune complexes, innate immunity and NETosis in ChAdOx1 vaccine-induced thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34405870/.
  296. Sensory Guillain-Barré syndrome following ChAdOx1 nCov-19 vaccine: report of two cases and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34416410/.
  297. Vogt-Koyanagi-Harada syndrome after COVID-19 and ChAdOx1 nCoV-19 (AZD1222) vaccination: https://pubmed.ncbi.nlm.nih.gov/34462013/.
  298. Reactivation of Vogt-Koyanagi-Harada disease under control for more than 6 years, after anti-SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34224024/.
  299. Post-vaccinal encephalitis after ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34324214/
  300. Neurological symptoms and neuroimaging alterations related to COVID-19 vaccine: cause or coincidence?: https://pubmed.ncbi.nlm.nih.gov/34507266/
  301. Fatal systemic capillary leak syndrome after SARS-COV-2 vaccination in a patient with multiple myeloma: https://pubmed.ncbi.nlm.nih.gov/34459725/
  302. Polyarthralgia and myalgia syndrome after vaccination with ChAdOx1 nCOV-19: https://pubmed.ncbi.nlm.nih.gov/34463066/
  303. Three cases of subacute thyroiditis after SARS-CoV-2 vaccination: post-vaccination ASIA syndrome: https://pubmed.ncbi.nlm.nih.gov/34043800/.
  304. Facial diplegia: a rare and atypical variant of Guillain-Barré syndrome and the Ad26.COV2.S vaccine: https://pubmed.ncbi.nlm.nih.gov/34447646/
  305. Association between ChAdOx1 nCoV-19 vaccination and bleeding episodes: large population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/34479760/.
  306. fulminant myocarditis and systemic hyperinflammation temporally associated with BNT162b2 COVID-19 mRNA vaccination in two patients: https://pubmed.ncbi.nlm.nih.gov/34416319/.
  307. Adverse effects reported after COVID-19 vaccination in a tertiary care hospital, centered on cerebral venous sinus thrombosis (CVST): https://pubmed.ncbi.nlm.nih.gov/34092166/
  308. Induction and exacerbation of subacute cutaneous lupus erythematosus erythematosus after mRNA- or adenoviral vector-based SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34291477/
  309. Petechiae and peeling of fingers after immunization with BTN162b2 messenger RNA (mRNA)-based COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34513435/
  310. Hepatitis C virus reactivation after COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34512037/
  311. Bilateral immune-mediated keratolysis after immunization with SARS-CoV-2 recombinant viral vector vaccine: https://pubmed.ncbi.nlm.nih.gov/34483273/.
  312. Immune-mediated thrombocytopenic purpura after Pfizer-BioNTech COVID-19 vaccine in an elderly woman: https://pubmed.ncbi.nlm.nih.gov/34513446/
  313. Platelet activation and modulation in thrombosis with thrombocytopenia syndrome associated with the ChAdO × 1 nCov-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34474550/
  314. Reactive arthritis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34033732/.
  315. Two cases of Graves’ disease after SARS-CoV-2 vaccination: an autoimmune / inflammatory syndrome induced by adjuvants: https://pubmed.ncbi.nlm.nih.gov/33858208/
  316. Acute relapse and impaired immunization after COVID-19 vaccination in a patient with multiple sclerosis treated with rituximab: https://pubmed.ncbi.nlm.nih.gov/34015240/
  317. Widespread fixed bullous drug eruption after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34482558/
  318. COVID-19 mRNA vaccine causing CNS inflammation: a case series: https://pubmed.ncbi.nlm.nih.gov/34480607/
  319. Thymic hyperplasia after Covid-19 mRNA-based vaccination with Covid-19: https://pubmed.ncbi.nlm.nih.gov/34462647/
  320. Acute disseminated encephalomyelitis following vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34325334/
  321. Tolosa-Hunt syndrome occurring after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34513398/
  322. Systemic capillary extravasation syndrome following vaccination with ChAdOx1 nCOV-19 (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34362727/
  323. Immune-mediated thrombocytopenia associated with Ad26.COV2.S vaccine (Janssen; Johnson & Johnson): https://pubmed.ncbi.nlm.nih.gov/34469919/.
  324. Transient thrombocytopenia with glycoprotein-specific platelet autoantibodies after vaccination with Ad26.COV2.S: case report: https://pubmed.ncbi.nlm.nih.gov/34516272/.
  325. Acute hyperactive encephalopathy following COVID-19 vaccination with dramatic response to methylprednisolone: case report: https://pubmed.ncbi.nlm.nih.gov/34512961/
  326. Transient cardiac injury in adolescents receiving the BNT162b2 mRNA COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34077949/
  327. Autoimmune hepatitis developing after ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34171435/
  328. Severe relapse of multiple sclerosis after COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34447349/
  329. Lymphohistocytic myocarditis after vaccination with the COVID-19 viral vector Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34514078/
  330. Hemophagocytic lymphohistiocytosis after vaccination with ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34406660/.
  331. IgA vasculitis in adult patient after vaccination with ChadOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34509658/
  332. A case of leukocytoclastic vasculitis after vaccination with a SARS-CoV2 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34196469/.
  333. Onset / outbreak of psoriasis after Corona virus ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca / Covishield): report of two cases: https://pubmed.ncbi.nlm.nih.gov/34350668/
  334. Hailey-Hailey disease exacerbation after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34436620/
  335. Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up by ultrasonography: https://pubmed.ncbi.nlm.nih.gov/34116295/.
  336. COVID-19 vaccine, immune thrombotic thrombocytopenia, jaundice, hyperviscosity: concern in cases with underlying hepatic problems: https://pubmed.ncbi.nlm.nih.gov/34509271/.
  337. Report of the International Cerebral Venous Thrombosis Consortium on cerebral venous thrombosis after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34462996/
  338. Immune thrombocytopenia after vaccination during the COVID-19 pandemic: https://pubmed.ncbi.nlm.nih.gov/34435486/
  339. COVID-19: lessons from the Norwegian tragedy should be taken into account in planning for vaccine launch in less developed/developing countries: https://pubmed.ncbi.nlm.nih.gov/34435142/
  340. Rituximab-induced acute lympholysis and pancytopenia following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34429981/
  341. Exacerbation of plaque psoriasis after COVID-19 inactivated mRNA and BNT162b2 vaccines: report of two cases: https://pubmed.ncbi.nlm.nih.gov/34427024/
  342. Vaccine-induced interstitial lung disease: a rare reaction to COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34510014/.
  343. Vesiculobullous cutaneous reactions induced by COVID-19 mRNA vaccine: report of four cases and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34236711/
  344. Vaccine-induced thrombocytopenia with severe headache: https://pubmed.ncbi.nlm.nih.gov/34525282/
  345. Acute perimyocarditis after the first dose of COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34515024/
  346. Rhabdomyolysis and fasciitis induced by COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34435250/.
  347. Rare cutaneous adverse effects of COVID-19 vaccines: a case series and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34363637/
  348. Immune thrombocytopenia associated with the Pfizer-BioNTech COVID-19 mRNA vaccine BNT162b2: https://www.sciencedirect.com/science/article/pii/S2214250921002018
  349. Secondary immune thrombocytopenia putatively attributable to COVID-19 vaccination: https://casereports.bmj.com/content/14/5/e242220.abstract.
  350. Immune thrombocytopenia following Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34155844/
  351. Newly diagnosed idiopathic thrombocytopenia after COVID-19 vaccine administration: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176657/.
  352. Idiopathic thrombocytopenic purpura and the Modern Covid-19 vaccine: https://www.annemergmed.com/article/S0196-0644(21)00122-0/fulltext.
  353. Thrombocytopenia after Pfizer and Moderna SARS vaccination – CoV -2: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014568/.
  354. Immune thrombocytopenic purpura and acute liver injury after COVID-19 vaccination: https://casereports.bmj.com/content/14/7/e242678.
  355. Collection of complement-mediated and autoimmune-mediated hematologic conditions after SARS-CoV-2 vaccination: https://ashpublications.org/bloodadvances/article/5/13/2794/476324/Autoimmune-and-complement-mediated-hematologic
  356. Petechial rash associated with CoronaVac vaccination: first report of cutaneous side effects before phase 3 results: https://ejhp.bmj.com/content/early/2021/05/23/ejhpharm-2021-002794
  357. COVID-19 vaccines induce severe hemolysis in paroxysmal nocturnal hemoglobinuria: https://ashpublications.org/blood/article/137/26/3670/475905/COVID-19-vaccines-induce-severe-hemolysis-in
  358. Cerebral venous thrombosis associated with COVID-19 vaccine in Germany: https://pubmed.ncbi.nlm.nih.gov/34288044/.
  359. Cerebral venous sinus thrombosis after COVID-19 vaccination : Neurological and radiological management: https://pubmed.ncbi.nlm.nih.gov/34327553/.
  360. Cerebral venous thrombosis and thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33878469/.
  361. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination: report of two cases in the United Kingdom: https://pubmed.ncbi.nlm.nih.gov/33857630/.
  362. Cerebral venous thrombosis induced by SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34090750/.
  363. Carotid artery immune thrombosis induced by adenovirus-vectored COVID-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34312301/.
  364. Cerebral venous sinus thrombosis associated with vaccine-induced thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34333995/
  365. The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune-immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34455073/
  366. Cerebral venous thrombosis after the BNT162b2 mRNA SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34111775/.
  367. Cerebral venous thrombosis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34045111/
  368. Lethal cerebral venous sinus thrombosis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33983464/
  369. Cerebral venous sinus thrombosis in the U.S. population, After SARS-CoV-2 vaccination with adenovirus and after COVID-19: https://pubmed.ncbi.nlm.nih.gov/34116145/
  370. Cerebral venous thrombosis after COVID-19 vaccination: is the risk of thrombosis increased by intravascular administration of the vaccine: https://pubmed.ncbi.nlm.nih.gov/34286453/.
  371. Central venous sinus thrombosis with subarachnoid hemorrhage after COVID-19 mRNA vaccination: are these reports merely coincidental: https://pubmed.ncbi.nlm.nih.gov/34478433/
  372. Cerebral venous sinus thrombosis after ChAdOx1 nCov-19 vaccination with a misleading first brain MRI: https://pubmed.ncbi.nlm.nih.gov/34244448/
  373. Early results of bivalirudin treatment for thrombotic thrombocytopenia and cerebral venous sinus thrombosis after vaccination with Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34226070/
  374. Cerebral venous sinus thrombosis associated with post-vaccination thrombocytopenia by COVID-19: https://pubmed.ncbi.nlm.nih.gov/33845870/.
  375. Cerebral venous sinus thrombosis 2 weeks after the first dose of SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34101024/.
  376. Vaccine-induced immune thrombotic thrombocytopenia causing a severe form of cerebral venous thrombosis with a high mortality rate: a case series: https://pubmed.ncbi.nlm.nih.gov/34393988/.
  377. Adenovirus interactions with platelets and coagulation and vaccine-associated autoimmune thrombocytopenia thrombosis syndrome: https://pubmed.ncbi.nlm.nih.gov/34407607/.
  378. Headache attributed to COVID-19 (SARS-CoV-2 coronavirus) vaccination with the ChAdOx1 nCoV-19 (AZD1222) vaccine: a multicenter observational cohort study: https://pubmed.ncbi.nlm.nih.gov/34313952/
  379. Adverse effects reported after COVID-19 vaccination in a tertiary care hospital, focus on cerebral venous sinus thrombosis (CVST): https://pubmed.ncbi.nlm.nih.gov/34092166/
  380. Cerebral venous sinus thrombosis following vaccination against SARS-CoV-2: an analysis of cases reported to the European Medicines Agency: https://pubmed.ncbi.nlm.nih.gov/34293217/
  381. A rare case of a middle-age Asian male with cerebral venous thrombosis after COVID-19 AstraZeneca vaccination: https://pubmed.ncbi.nlm.nih.gov/34274191/
  382. Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in a non-comorbid elderly Indian male treated with conventional heparin-warfarin-based anticoagulation: https://pubmed.ncbi.nlm.nih.gov/34186376/
  383. Arterial events, venous thromboembolism, thrombocytopenia and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/33952445/
  384. Procoagulant microparticles: a possible link between vaccine-induced immune thrombocytopenia (VITT) and cerebral sinus venous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34129181/
  385. S. case reports of cerebral venous sinus thrombosis with thrombocytopenia after vaccination with Ad26.COV2.S, March 2-April 21, 2021: https://pubmed.ncbi.nlm.nih.gov/33929487/.
  386. Malignant cerebral infarction after vaccination with ChAdOx1 nCov-19: a catastrophic variant of vaccine-induced immune-mediated thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34341358/
  387. Acute ischemic stroke revealing immune thrombotic thrombocytopenia induced by ChAdOx1 nCov-19 vaccine: impact on recanalization strategy: https://pubmed.ncbi.nlm.nih.gov/34175640/
  388. Vaccine-induced immune thrombotic immune thrombocytopenia (VITT): a new clinicopathologic entity with heterogeneous clinical presentations: https://pubmed.ncbi.nlm.nih.gov/34159588/.
  389. Imaging and hematologic findings in thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19 (AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34402666/
  390. Autoimmunity roots of thrombotic events after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34508917/
  391. Cerebral venous sinus thrombosis after vaccination: the UK experience: https://pubmed.ncbi.nlm.nih.gov/34370974/
  392. Massive cerebral venous thrombosis and venous basin infarction as late complications of COVID-19: a case report: https://pubmed.ncbi.nlm.nih.gov/34373991/
  393. Australian and New Zealand approach to the diagnosis and treatment of vaccine-induced immune thrombosis and immune thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34490632/
  394. An observational study to identify the prevalence of thrombocytopenia and anti-PF4 / polyanion antibodies in Norwegian health care workers after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33909350/
  395. Acute transverse myelitis (ATM): clinical review of 43 patients with COVID-19-associated ATM and 3 serious adverse events of post-vaccination ATM with ChAdOx1 nCoV-19 (AZD1222) vaccine: https://pubmed.ncbi.nlm.nih.gov/33981305/.
  396. A case of acute demyelinating polyradiculoneuropathy with bilateral facial palsy after ChAdOx1 nCoV-19 vaccine:. https://pubmed.ncbi.nlm.nih.gov/34272622/
  397. Thrombocytopenia with acute ischemic stroke and hemorrhage in a patient recently vaccinated with an adenoviral vector-based COVID-19 vaccine:. https://pubmed.ncbi.nlm.nih.gov/33877737/
  398. Predicted and observed incidence of thromboembolic events among Koreans vaccinated with the ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34254476/
  399. First dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic, and hemorrhagic events in Scotland: https://pubmed.ncbi.nlm.nih.gov/34108714/
  400. ChAdOx1 nCoV-19 vaccine-associated thrombocytopenia: three cases of immune thrombocytopenia after 107,720 doses of ChAdOx1 vaccination in Thailand: https://pubmed.ncbi.nlm.nih.gov/34483267/.
  401. Pulmonary embolism, transient ischemic attack, and thrombocytopenia after Johnson & Johnson COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34261635/
  402. Neurosurgical considerations with respect to decompressive craniectomy for intracerebral hemorrhage after SARS-CoV-2 vaccination in vaccine-induced thrombotic thrombocytopenia-VITT: https://pubmed.ncbi.nlm.nih.gov/34202817/
  403. Large hemorrhagic stroke after vaccination against ChAdOx1 nCoV-19: a case report: https://pubmed.ncbi.nlm.nih.gov/34273119/
  404. Polyarthralgia and myalgia syndrome after vaccination with ChAdOx1 nCOV-19: https://pubmed.ncbi.nlm.nih.gov/34463066/
  405. A rare case of thrombosis and thrombocytopenia of the superior ophthalmic vein after ChAdOx1 nCoV-19 vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34276917/
  406. Thrombosis and severe acute respiratory syndrome Coronavirus 2 vaccines: vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34237213/.
  407. Renal vein thrombosis and pulmonary embolism secondary to vaccine-induced thrombotic immune thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34268278/.
  408. Limb ischemia and pulmonary artery thrombosis after ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca): a case of vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/33990339/.
  409. Association between ChAdOx1 nCoV-19 vaccination and bleeding episodes: large population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/34479760/.
  410. Secondary thrombocytopenia after SARS-CoV-2 vaccination: case report of haemorrhage and hematoma after minor oral surgery: https://pubmed.ncbi.nlm.nih.gov/34314875/.
  411. Venous thromboembolism and mild thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34384129/
  412. Fatal exacerbation of ChadOx1-nCoV-19-induced thrombotic thrombocytopenia syndrome after successful initial therapy with intravenous immunoglobulins: a rationale for monitoring immunoglobulin G levels: https://pubmed.ncbi.nlm.nih.gov/34382387/
  413. A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: victim or causality?: https://pubmed.ncbi.nlm.nih.gov/34416184/.
  414. Intracerebral hemorrhage associated with vaccine-induced thrombotic thrombocytopenia after ChAdOx1 nCOVID-19 vaccination in a pregnant woman: https://pubmed.ncbi.nlm.nih.gov/34261297/
  415. Massive cerebral venous thrombosis due to vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34261296/
  416. Nephrotic syndrome after ChAdOx1 nCoV-19 vaccine against SARScoV-2: https://pubmed.ncbi.nlm.nih.gov/34250318/.
  417. A case of vaccine-induced immune-immune thrombotic thrombocytopenia with massive arteriovenous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34059191/
  418. Cutaneous thrombosis associated with cutaneous necrosis following Oxford-AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34189756/
  419. Thrombocytopenia in an adolescent with sickle cell anemia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34331506/
  420. Vaccine-induced thrombocytopenia with severe headache: https://pubmed.ncbi.nlm.nih.gov/34525282/
  421. Myocarditis associated with SARS-CoV-2 mRNA vaccination in children aged 12 to 17 years: stratified analysis of a national database: https://www.medrxiv.org/content/10.1101/2021.08.30.21262866v1
  422. COVID-19 mRNA vaccination and development of CMR-confirmed myopericarditis: https://www.medrxiv.org/content/10.1101/2021.09.13.21262182v1.full?s=09.
  423. Severe autoimmune hemolytic anemia after receipt of SARS-CoV-2 mRNA vaccine: https://onlinelibrary.wiley.com/doi/10.1111/trf.16672
  424. Intravenous injection of coronavirus disease 2019 (COVID-19) mRNA vaccine can induce acute myopericarditis in a mouse model: https://t.co/j0IEM8cMXI
  425. A report of myocarditis adverse events in the U.S. Vaccine Adverse Event Reporting System. (VAERS) in association with COVID-19 injectable biologics: https://pubmed.ncbi.nlm.nih.gov/34601006/
  426. This study concludes that: “The vaccine was associated with an excess risk of myocarditis (1 to 5 events per 100,000 persons). The risk of this potentially serious adverse event and of many other serious adverse events increased substantially after SARS-CoV-2 infection”: https://www.nejm.org/doi/full/10.1056/NEJMoa2110475
  427. Bilateral uveitis after inoculation with COVID-19 vaccine: a case report: https://www.sciencedirect.com/science/article/pii/S1201971221007797
  428. Myocarditis associated with SARS-CoV-2 mRNA vaccination in children aged 12 to 17 years: stratified analysis of a national database: https://www.medrxiv.org/content/10.1101/2021.08.30.21262866v1.
  429. Immune-mediated hepatitis with the Moderna vaccine is no longer a coincidence but confirmed: https://www.sciencedirect.com/science/article/pii/S0168827821020936
  430. Extensive investigations revealed consistent pathophysiologic alterations after vaccination with COVID-19 vaccines: https://www.nature.com/articles/s41421-021-00329-3
  431. Lobar hemorrhage with ventricular rupture shortly after the first dose of an mRNA-based SARS-CoV-2 vaccine: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8553377/
  432. Mrna COVID vaccines dramatically increase endothelial inflammatory markers and risk of Acute Coronary Syndrome as measured by PULS cardiac testing: a caution: https://www.ahajournals.org/doi/10.1161/circ.144.suppl_1.10712
  433. ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome:https://www.science.org/doi/10.1126/sciadv.abl8213
  434. Lethal vaccine-induced immune thrombotic immune thrombocytopenia (VITT) following announcement 26.COV2.S: first documented case outside the U.S.: https://pubmed.ncbi.nlm.nih.gov/34626338/
  435. A prothrombotic thrombocytopenic disorder resembling heparin-induced thrombocytopenia after coronavirus-19 vaccination: https://europepmc.org/article/PPR/PPR304469 435.
  436. VITT (vaccine-induced immune thrombotic thrombocytopenia) after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34731555/
  437. Vaccine-induced immune thrombotic thrombocytopenia (VITT): a new clinicopathologic entity with heterogeneous clinical presentations: https://pubmed.ncbi.nlm.nih.gov/34159588/
  438. Treatment of acute ischemic stroke associated with ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34461442/
  439. Spectrum of neurological complications after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34719776/.
  440. Cerebral venous sinus thrombosis after vaccination: the UK experience: https://pubmed.ncbi.nlm.nih.gov/34370974/
  441. Cerebral venous vein/venous sinus thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34373413/
  442. Portal vein thrombosis due to vaccine-induced immune thrombotic immune thrombocytopenia (VITT) after Covid vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34598301/
  443. Hematuria, a generalized petechial rash and headaches after Oxford AstraZeneca ChAdOx1 nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34620638/
  444. Myocardial infarction and azygos vein thrombosis after vaccination with ChAdOx1 nCoV-19 in a hemodialysis patient: https://pubmed.ncbi.nlm.nih.gov/34650896/
  445. Takotsubo (stress) cardiomyopathy after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34625447/
  446. Humoral response induced by Prime-Boost vaccination with ChAdOx1 nCoV-19 and BNT162b2 mRNA vaccines in a patient with multiple sclerosis treated with teriflunomide: https://pubmed.ncbi.nlm.nih.gov/34696248/
  447. Guillain-Barré syndrome after ChAdOx1 nCoV-19 COVID-19 vaccination: a case series: https://pubmed.ncbi.nlm.nih.gov/34548920/
  448. Refractory vaccine-induced immune thrombotic thrombocytopenia (VITT) treated with delayed therapeutic plasma exchange (TPE): https://pubmed.ncbi.nlm.nih.gov/34672380/.
  449. Rare case of COVID-19 vaccine-associated intracranial hemorrhage with venous sinus thrombosis: https://pubmed.ncbi.nlm.nih.gov/34556531/.
  450. Delayed headache after COVID-19 vaccination: a warning sign for vaccine-induced cerebral venous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34535076/.
  451. Clinical features of vaccine-induced thrombocytopenia and immune thrombosis: https://pubmed.ncbi.nlm.nih.gov/34379914/.
  452. Predictors of mortality in thrombotic thrombocytopenia after adenoviral COVID-19 vaccination: the FAPIC score: https://pubmed.ncbi.nlm.nih.gov/34545400/
  453. Ischemic stroke as a presenting feature of immune thrombotic thrombocytopenia induced by ChAdOx1-nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34035134/
  454. In-hospital observational study of neurological disorders in patients recently vaccinated with COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34688190/
  455. Endovascular treatment for vaccine-induced cerebral venous sinus thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19: report of three cases: https://pubmed.ncbi.nlm.nih.gov/34782400/
  456. Cardiovascular, neurological, and pulmonary events after vaccination with BNT162b2, ChAdOx1 nCoV-19, and Ad26.COV2.S vaccines: an analysis of European data: https://pubmed.ncbi.nlm.nih.gov/34710832/
  457. Cerebral venous thrombosis developing after vaccination. COVID-19: VITT, VATT, TTS and more: https://pubmed.ncbi.nlm.nih.gov/34695859/
  458. Cerebral venous thrombosis and myeloproliferative neoplasms: a three-center study of 74 consecutive cases: https://pubmed.ncbi.nlm.nih.gov/34453762/.
  459. Possible triggers of thrombocytopenia and/or hemorrhage by BNT162b2 vaccine, Pfizer-BioNTech: https://pubmed.ncbi.nlm.nih.gov/34660652/.
  460. Multiple sites of arterial thrombosis in a 35-year-old patient after vaccination with ChAdOx1 (AstraZeneca), which required emergency femoral and carotid surgical thrombectomy: https://pubmed.ncbi.nlm.nih.gov/34644642/
  461. Case series of vaccine-induced thrombotic thrombocytopenia in a London teaching hospital: https://pubmed.ncbi.nlm.nih.gov/34694650/
  462. Neuro-ophthalmic complications with thrombocytopenia and thrombosis induced by ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34726934/
  463. Thrombotic events after COVID-19 vaccination in over 50 years of age: results of a population-based study in Italy: https://pubmed.ncbi.nlm.nih.gov/34835237/
  464. Intracerebral hemorrhage associated with vaccine-induced thrombotic thrombocytopenia after ChAdOx1 nCOVID-19 vaccination in a pregnant woman: https://pubmed.ncbi.nlm.nih.gov/34261297/
  465. Age- and sex-specific incidence of cerebral venous sinus thrombosis associated with Ad26.COV2.S COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34724036/.
  466. Genital necrosis with cutaneous thrombosis following vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34839563/
  467. Cerebral venous sinus thrombosis after mRNA-based COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34783932/.
  468. COVID-19 vaccine-induced immune thrombosis with thrombocytopenia thrombosis (VITT) and shades of gray in thrombus formation: https://pubmed.ncbi.nlm.nih.gov/34624910/
  469. Inflammatory myositis after vaccination with ChAdOx1: https://pubmed.ncbi.nlm.nih.gov/34585145/
  470. Acute ST-segment elevation myocardial infarction secondary to vaccine-induced immune thrombosis with thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34580132/.
  471. A rare case of COVID-19 vaccine-induced thrombotic thrombocytopenia (VITT) affecting the venosplanchnic and pulmonary arterial circulation from a UK district general hospital: https://pubmed.ncbi.nlm.nih.gov/34535492/
  472. COVID-19 vaccine-induced thrombotic thrombocytopenia: a case series: https://pubmed.ncbi.nlm.nih.gov/34527501/
  473. Thrombosis with thrombocytopenia syndrome (TTS) after vaccination with AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19: a risk-benefit analysis for persons <60% risk-benefit analysis for people <60 years in Australia: https://pubmed.ncbi.nlm.nih.gov/34272095/
  474. Immune thrombocytopenia after immunization with Vaxzevria ChadOx1-S vaccine (AstraZeneca), Victoria, Australia: https://pubmed.ncbi.nlm.nih.gov/34756770/
  475. Characteristics and outcomes of patients with cerebral venous sinus thrombosis in thrombotic immune thrombocytopenia induced by SARS-CoV-2 vaccine: https://jamanetwork.com/journals/jamaneurology/fullarticle/2784622
  476. Case study of thrombosis and thrombocytopenia syndrome after administration of the AstraZeneca COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34781321/
  477. Thrombosis with Thrombocytopenia Syndrome Associated with COVID-19 Vaccines: https://pubmed.ncbi.nlm.nih.gov/34062319/
  478. Cerebral venous sinus thrombosis following vaccination with ChAdOx1: the first case of definite thrombosis with thrombocytopenia syndrome in India: https://pubmed.ncbi.nlm.nih.gov/34706921/
  479. COVID-19 vaccine-associated thrombosis with thrombocytopenia syndrome (TTS): systematic review and post hoc analysis: https://pubmed.ncbi.nlm.nih.gov/34698582/.
  480. Case report of immune thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34751013/.
  481. Acute transverse myelitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34684047/.
  482. Concerns for adverse effects of thrombocytopenia and thrombosis after adenovirus-vectored COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34541935/
  483. Major hemorrhagic stroke after ChAdOx1 nCoV-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34273119/
  484. Cerebral venous sinus thrombosis after COVID-19 vaccination: neurologic and radiologic management: https://pubmed.ncbi.nlm.nih.gov/34327553/.
  485. Thrombocytopenia with acute ischemic stroke and hemorrhage in a patient recently vaccinated with an adenoviral vector-based COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33877737/
  486. Intracerebral hemorrhage and thrombocytopenia after AstraZeneca COVID-19 vaccine: clinical and diagnostic challenges of vaccine-induced thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34646685/
  487. Minimal change disease with severe acute kidney injury after Oxford-AstraZeneca COVID-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34242687/.
  488. Case report: cerebral sinus vein thrombosis in two patients with AstraZeneca SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34609603/
  489. Case report: Pityriasis rosea-like rash after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34557507/
  490. Extensive longitudinal transverse myelitis after ChAdOx1 nCOV-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34641797/.
  491. Acute eosinophilic pneumonia associated with anti-COVID-19 vaccine AZD1222: https://pubmed.ncbi.nlm.nih.gov/34812326/.
  492. Thrombocytopenia, including immune thrombocytopenia after receiving COVID-19 mRNA vaccines reported to the Vaccine Adverse Event Reporting System (VAERS): https://pubmed.ncbi.nlm.nih.gov/34006408/
  493. A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: victim or causality?: https://pubmed.ncbi.nlm.nih.gov/34416184/
  494. Vaccine-induced immune thrombosis and thrombocytopenia syndrome after adenovirus-vectored severe acute respiratory syndrome coronavirus 2 vaccination: a new hypothesis on mechanisms and implications for future vaccine development: https://pubmed.ncbi.nlm.nih.gov/34664303/.
  495. Thrombosis in peripheral artery disease and thrombotic thrombocytopenia following adenoviral COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34649281/.
  496. Newly diagnosed immune thrombocytopenia in a pregnant patient after coronavirus disease 2019 vaccination: https://pubmed.ncbi.nlm.nih.gov/34420249/
  497. Cerebral venous sinus thrombosis and thrombotic events after vector-based COVID-19 vaccines: systematic review and meta-analysis: https://pubmed.ncbi.nlm.nih.gov/34610990/.
  498. Sweet’s syndrome after Oxford-AstraZeneca COVID-19 vaccine (AZD1222) in an elderly woman: https://pubmed.ncbi.nlm.nih.gov/34590397/
  499. Sudden sensorineural hearing loss after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34670143/.
  500. Prevalence of serious adverse events among health care professionals after receiving the first dose of ChAdOx1 nCoV-19 coronavirus vaccine (Covishield) in Togo, March 2021: https://pubmed.ncbi.nlm.nih.gov/34819146/.
  501. Acute hemichorea-hemibalismus after COVID-19 (AZD1222) vaccination: https://pubmed.ncbi.nlm.nih.gov/34581453/
  502. Recurrence of alopecia areata after covid-19 vaccination: a report of three cases in Italy: https://pubmed.ncbi.nlm.nih.gov/34741583/
  503. Shingles-like skin lesion after vaccination with AstraZeneca for COVID-19: a case report: https://pubmed.ncbi.nlm.nih.gov/34631069/
  504. Thrombosis after COVID-19 vaccination: possible link to ACE pathways: https://pubmed.ncbi.nlm.nih.gov/34479129/
  505. Thrombocytopenia in an adolescent with sickle cell anemia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34331506/
  506. Leukocytoclastic vasculitis as a cutaneous manifestation of ChAdOx1 corona virus vaccine nCoV-19 (recombinant): https://pubmed.ncbi.nlm.nih.gov/34546608/
  507. Abdominal pain and bilateral adrenal hemorrhage from immune thrombotic thrombocytopenia induced by COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34546343/
  508. Longitudinally extensive cervical myelitis after vaccination with inactivated virus based COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34849183/
  509. Induction of cutaneous leukocytoclastic vasculitis after ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34853744/.
  510. A case of toxic epidermal necrolysis after vaccination with ChAdOx1 nCoV-19 (AZD1222): https://pubmed.ncbi.nlm.nih.gov/34751429/.
  511. Ocular adverse events following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34559576/
  512. Depression after ChAdOx1-S / nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34608345/.
  513. Venous thromboembolism and mild thrombocytopenia after ChAdOx1 nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34384129/.
  514. Recurrent ANCA-associated vasculitis after Oxford AstraZeneca ChAdOx1-S COVID-19 vaccination: a case series of two patients: https://pubmed.ncbi.nlm.nih.gov/34755433/
  515. Major artery thrombosis and vaccination against ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34839830/
  516. Rare case of contralateral supraclavicular lymphadenopathy after vaccination with COVID-19: computed tomography and ultrasound findings: https://pubmed.ncbi.nlm.nih.gov/34667486/
  517. Cutaneous lymphocytic vasculitis after administration of the second dose of AZD1222 (Oxford-AstraZeneca) Severe acute respiratory syndrome Coronavirus 2 vaccine: chance or causality: https://pubmed.ncbi.nlm.nih.gov/34726187/.
  518. Pancreas allograft rejection after ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34781027/
  519. Understanding the risk of thrombosis with thrombocytopenia syndrome following Ad26.COV2.S vaccination: https://pubmed.ncbi.nlm.nih.gov/34595694/
  520. Cutaneous adverse reactions of 35,229 doses of COVID-19 Sinovac and AstraZeneca vaccine COVID-19: a prospective cohort study in health care workers: https://pubmed.ncbi.nlm.nih.gov/34661934/
  521. Comments on thrombosis after vaccination: spike protein leader sequence could be responsible for thrombosis and antibody-mediated thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34788138
  522. Eosinophilic dermatosis after AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34753210/.
  523. Severe immune thrombocytopenia following COVID-19 vaccination: report of four cases and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34653943/.
  524. Relapse of immune thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34591991/
  525. Thrombosis in pre- and post-vaccination phase of COVID-19; https://pubmed.ncbi.nlm.nih.gov/34650382/
  526. A look at the role of postmortem immunohistochemistry in understanding the inflammatory pathophysiology of COVID-19 disease and vaccine-related thrombotic adverse events: a narrative review: https://pubmed.ncbi.nlm.nih.gov/34769454/
  527. COVID-19 vaccine in patients with hypercoagulability disorders: a clinical perspective: https://pubmed.ncbi.nlm.nih.gov/34786893/
  528. Vaccine-associated thrombocytopenia and thrombosis: venous endotheliopathy leading to combined venous micro-macrothrombosis: https://pubmed.ncbi.nlm.nih.gov/34833382/
  529. Thrombosis and thrombocytopenia syndrome causing isolated symptomatic carotid occlusion after COVID-19 Ad26.COV2.S vaccine (Janssen): https://pubmed.ncbi.nlm.nih.gov/34670287/
  530. An unusual presentation of acute deep vein thrombosis after Modern COVID-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34790811/
  531. Immediate high-dose intravenous immunoglobulins followed by direct treatment with thrombin inhibitors is crucial for survival in vaccine-induced immune thrombotic thrombocytopenia Sars-Covid-19-vector adenoviral VITT with venous thrombosis of the cerebral sinus and portal vein: https://pubmed.ncbi.nlm.nih.gov/34023956/.
  532. Thrombosis formation after COVID-19 vaccination immunologic aspects: review article: https://pubmed.ncbi.nlm.nih.gov/34629931/
  533. Imaging and hematologic findings in thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19 (AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34402666/
  534. Spectrum of neuroimaging findings in post-CoVID-19 vaccination: a case series and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34842783/
  535. Cerebral venous sinus thrombosis, pulmonary embolism, and thrombocytopenia after COVID-19 vaccination in a Taiwanese man: a case report and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34630307/
  536. Fatal cerebral venous sinus thrombosis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33983464/
  537. Autoimmune roots of thrombotic events after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34508917/.
  538. New portal vein thrombosis in cirrhosis: is thrombophilia exacerbated by vaccine or COVID-19: https://www.jcehepatology.com/article/S0973-6883(21)00545-4/fulltext.
  539. Images of immune thrombotic thrombocytopenia induced by Oxford / AstraZeneca® COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33962903/.
  540. Cerebral venous sinus thrombosis after vaccination with COVID-19 mRNA of BNT162b2: https://pubmed.ncbi.nlm.nih.gov/34796065/.
  541. Increased risk of urticaria/angioedema after BNT162b2 mRNA COVID-19 vaccination in health care workers taking ACE inhibitors: https://pubmed.ncbi.nlm.nih.gov/34579248/
  542. A case of unusual mild clinical presentation of COVID-19 vaccine-induced immune thrombotic thrombocytopenia with splanchnic vein thrombosis: https://pubmed.ncbi.nlm.nih.gov/34843991/
  543. Cerebral venous sinus thrombosis following vaccination with Pfizer-BioNTech COVID-19 (BNT162b2): https://pubmed.ncbi.nlm.nih.gov/34595867/
  544. A case of idiopathic thrombocytopenic purpura after a booster dose of COVID-19 BNT162b2 vaccine (Pfizer-Biontech): https://pubmed.ncbi.nlm.nih.gov/34820240/
  545. Vaccine-induced immune thrombotic immune thrombocytopenia (VITT): targeting pathologic mechanisms with Bruton’s tyrosine kinase inhibitors: https://pubmed.ncbi.nlm.nih.gov/33851389/
  546. Thrombotic thrombocytopenic purpura after vaccination with Ad26.COV2-S: https://pubmed.ncbi.nlm.nih.gov/33980419/
  547. Thromboembolic events in younger females exposed to Pfizer-BioNTech or Moderna COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34264151/
  548. Potential risk of thrombotic events after COVID-19 vaccination with Oxford-AstraZeneca in women receiving estrogen: https://pubmed.ncbi.nlm.nih.gov/34734086/
  549. Thrombosis after adenovirus-vectored COVID-19 vaccination: a concern for underlying disease: https://pubmed.ncbi.nlm.nih.gov/34755555/
  550. Adenovirus interactions with platelets and coagulation and vaccine-induced immune thrombotic thrombocytopenia syndrome: https://pubmed.ncbi.nlm.nih.gov/34407607/
  551. Thrombotic thrombocytopenic purpura: a new threat after COVID bnt162b2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34264514/.
  552. Unusual site of deep vein thrombosis after vaccination against coronavirus mRNA-2019 coronavirus disease (COVID-19): https://pubmed.ncbi.nlm.nih.gov/34840204/
  553. Neurological side effects of SARS-CoV-2 vaccines: https://pubmed.ncbi.nlm.nih.gov/34750810/
  554. Coagulopathies after SARS-CoV-2 vaccination may derive from a combined effect of SARS-CoV-2 spike protein and adenovirus vector-activated signaling pathways: https://pubmed.ncbi.nlm.nih.gov/34639132/
  555. Isolated pulmonary embolism after COVID vaccination: 2 case reports and a review of acute pulmonary embolism complications and follow-up: https://pubmed.ncbi.nlm.nih.gov/34804412/
  556. Central retinal vein occlusion after vaccination with SARS-CoV-2 mRNA: case report: https://pubmed.ncbi.nlm.nih.gov/34571653/.
  557. Complicated case report of long-term vaccine-induced thrombotic immune thrombocytopenia A: https://pubmed.ncbi.nlm.nih.gov/34835275/.
  558. Deep venous thrombosis after vaccination with Ad26.COV2.S in adult males: https://pubmed.ncbi.nlm.nih.gov/34659839/.
  559. Neurological autoimmune diseases after SARS-CoV-2 vaccination: a case series: https://pubmed.ncbi.nlm.nih.gov/34668274/.
  560. Severe autoimmune hemolytic autoimmune anemia after receiving SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34549821/
  561. Occurrence of COVID-19 variants among recipients of ChAdOx1 nCoV-19 vaccine (recombinant): https://pubmed.ncbi.nlm.nih.gov/34528522/
  562. Prevalence of thrombocytopenia, anti-platelet factor 4 antibodies, and elevated D-dimer in Thais after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34568726/
  563. Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents after co-vaccination: https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciab989/644 5179.
  564. Myocarditis after 2019 coronavirus disease mRNA vaccine: a case series and determination of incidence rate: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab926/6420408
  565. Myocarditis and pericarditis after COVID-19 vaccination: inequalities in age and vaccine types: https://www.mdpi.com/2075-4426/11/11/1106
  566. Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study: https://pubmed.ncbi.nlm.nih.gov/34402230/
  567. Shedding light on post-vaccination myocarditis and pericarditis in COVID-19 and non-COVID-19 vaccine recipients: https://pubmed.ncbi.nlm.nih.gov/34696294/
  568. Myocarditis Following mRNA COVID-19 Vaccine: https://journals.lww.com/pec-online/Abstract/2021/11000/Myocarditis_Following_ mRNA_COVID_19_Vaccine.9.aspx.
  569. Myocarditis following BNT162b2 mRNA Covid-19 mRNA vaccine in Israel: https://pubmed.ncbi.nlm.nih.gov/34614328/.
  570. Myocarditis, pericarditis, and cardiomyopathy following COVID-19 vaccination: https://www.heartlungcirc.org/article/S1443-9506(21)01156-2/fulltext
  571. Myocarditis and other cardiovascular complications of COVID-19 mRNA-based COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34277198/
  572. Possible Association Between COVID-19 Vaccine and Myocarditis: Clinical and CMR Findings: https://pubmed.ncbi.nlm.nih.gov/34246586/
  573. Hypersensitivity Myocarditis and COVID-19 Vaccines: https://pubmed.ncbi.nlm.nih.gov/34856634/.
  574. Severe myocarditis associated with COVID-19 vaccine: zebra or unicorn?: https://www.internationaljournalofcardiology.com/article/S0167-5273(21)01477-7/fulltext.
  575. Acute myocardial infarction and myocarditis after COVID-19 vaccination: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8522388/
  576. Myocarditis after Covid-19 vaccination in a large healthcare organization: https://www.nejm.org/doi/10.1056/NEJMoa2110737
  577. Association of myocarditis with COVID-19 messenger RNA BNT162b2 vaccine in a case series of children: https://jamanetwork.com/journals/jamacardiology/fullarticle/2783052
  578. Clinical suspicion of myocarditis temporally related to COVID-19 vaccination in adolescents and young adults: https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.121.056583?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
  579. STEMI mimicry: focal myocarditis in an adolescent patient after COVID-19 mRNA vaccination:. https://pubmed.ncbi.nlm.nih.gov/34756746/
  580. Myocarditis and pericarditis in association with COVID-19 mRNA vaccination: cases from a regional pharmacovigilance center: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8587334/
  581. Myocarditis after COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34546329/.
  582. Patients with acute myocarditis after COVID-19 mRNA vaccination:. https://jamanetwork.com/journals/jamacardiology/fullarticle/2781602.
  583. Myocarditis after COVID-19 vaccination: a case series: https://www.sciencedirect.com/science/article/pii/S0264410X21011725?via%3Dihub.
  584. Myocarditis associated with COVID-19 vaccination in adolescents: https://publications.aap.org/pediatrics/article/148/5/e2021053427/181357
  585. Myocarditis findings on cardiac magnetic resonance imaging after vaccination with COVID-19 mRNA in adolescents:. https://pubmed.ncbi.nlm.nih.gov/34704459/
  586. Myocarditis after COVID-19 vaccination: magnetic resonance imaging study: https://academic.oup.com/ehjcimaging/advance-article/doi/10.1093/ehjci/jeab230/6 421640.
  587. Acute myocarditis after administration of the second dose of BNT162b2 COVID-19 vaccine: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8599115/
  588. Myocarditis after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S2352906721001603
  589. Case report: probable myocarditis after Covid-19 mRNA vaccine in a patient with arrhythmogenic left ventricular cardiomyopathy: https://pubmed.ncbi.nlm.nih.gov/34712717/.
  590. Acute myocarditis after administration of BNT162b2 vaccine against COVID-19: https://www.revespcardiol.org/en-linkresolver-acute-myocarditis-after-administration-bnt162b2-S188558572100133X.
  591. Myocarditis associated with COVID-19 mRNA vaccination: https://pubs.rsna.org/doi/10.1148/radiol.2021211430
  592. Acute myocarditis after COVID-19 vaccination: a case report: https://www.sciencedirect.com/science/article/pii/S0248866321007098
  593. Acute myopericarditis after COVID-19 vaccination in adolescents:. https://pubmed.ncbi.nlm.nih.gov/34589238/.
  594. Perimyocarditis in adolescents after Pfizer-BioNTech COVID-19 vaccination: https://academic.oup.com/jpids/article/10/10/962/6329543.
  595. Acute myocarditis associated with anti-COVID-19 vaccination: https://ecevr.org/DOIx.php?id=10.7774/cevr.2021.10.2.196.
  596. Myocarditis associated with COVID-19 vaccination: echocardiographic, cardiac CT, and MRI findings:. https://pubmed.ncbi.nlm.nih.gov/34428917/.
  597. Acute symptomatic myocarditis in 7 adolescents after Pfizer-BioNTech COVID-19 vaccination:. https://pubmed.ncbi.nlm.nih.gov/34088762/.
  598. Myocarditis and pericarditis in adolescents after first and second doses of COVID-19 mRNA vaccines:. https://academic.oup.com/ehjqcco/advance-article/doi/10.1093/ehjqcco/qcab090/64 42104.
  599. COVID 19 vaccine for adolescents. Concern for myocarditis and pericarditis: https://www.mdpi.com/2036-7503/13/3/61.
  600. Cardiac imaging of acute myocarditis after vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34402228/
  601. Myocarditis temporally associated with COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34133885/
  602. Acute myocardial injury after COVID-19 vaccination: a case report and review of current evidence from the vaccine adverse event reporting system database: https://pubmed.ncbi.nlm.nih.gov/34219532/
  603. Acute myocarditis associated with COVID-19 vaccination: report of a case: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8639400/
  604. Myocarditis following vaccination with COVID-19 messenger RNA: a Japanese case series: https://pubmed.ncbi.nlm.nih.gov/34840235/.
  605. Myocarditis in the setting of a recent COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34712497/.
  606. Acute myocarditis after a second dose of COVID-19 mRNA vaccine: report of two cases: https://www.clinicalimaging.org/article/S0899-7071(21)00265-5/fulltext.
  607. Prevalence of thrombocytopenia, antiplatelet factor 4 antibodies, and elevated D-dimer in Thais after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34568726/
  608. Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents after co-vaccination: https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciab989/6445179
  609. Myocarditis after 2019 coronavirus disease mRNA vaccine: a case series and incidence rate determination: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab926/6420408.
  610. Myocarditis and pericarditis after COVID-19 vaccination: inequalities in age and vaccine types: https://www.mdpi.com/2075-4426/11/11/1106
  611. Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study: https://pubmed.ncbi.nlm.nih.gov/34402230/
  612. Shedding light on post-vaccination myocarditis and pericarditis in COVID-19 and non-COVID-19 vaccine recipients: https://pubmed.ncbi.nlm.nih.gov/34696294/
  613. Diffuse prothrombotic syndrome after administration of ChAdOx1 nCoV-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34615534/
  614. Three cases of acute venous thromboembolism in women after coronavirus 2019 vaccination: https://pubmed.ncbi.nlm.nih.gov/34352418/
  615. Clinical and biological features of cerebral venous sinus thrombosis after vaccination with ChAdOx1 nCov-19; https://jnnp.bmj.com/content/early/2021/09/29/jnnp-2021-327340.
  616. COV2-S vaccination may reveal hereditary thrombophilia: massive cerebral venous sinus thrombosis in a young man with normal platelet count: https://pubmed.ncbi.nlm.nih.gov/34632750/
  617. Post-mortem findings in vaccine-induced thrombotic thrombocytopenia: https://haematologica.org/article/view/haematol.2021.279075
  618. COVID-19 vaccine-induced thrombosis: https://pubmed.ncbi.nlm.nih.gov/34802488/.
  619. Inflammation and platelet activation after COVID-19 vaccines: possible mechanisms behind vaccine-induced immune thrombocytopenia and thrombosis: https://pubmed.ncbi.nlm.nih.gov/34887867/.
  620. Anaphylactoid reaction and coronary thrombosis related to COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34863404/.
  621. Vaccine-induced cerebral venous thrombosis and thrombocytopenia. Oxford-AstraZeneca COVID-19: a missed opportunity for rapid return on experience: https://www.sciencedirect.com/science/article/pii/S235255682100093X
  622. Occurrence of splenic infarction due to arterial thrombosis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34876440/
  623. Deep venous thrombosis more than two weeks after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33928773/
  624. Case report: Take a second look: Cerebral venous thrombosis related to Covid-19 vaccination and thrombotic thrombocytopenia syndrome: https://pubmed.ncbi.nlm.nih.gov/34880826/
  625. Information on ChAdOx1 nCoV-19 vaccine-induced immune-mediated thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34587242/
  626. Change in blood viscosity after COVID-19 vaccination: estimation for persons with underlying metabolic syndrome: https://pubmed.ncbi.nlm.nih.gov/34868465/
  627. Management of a patient with a rare congenital limb malformation syndrome after SARS-CoV-2 vaccine-induced thrombosis and thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34097311/
  628. Bilateral thalamic stroke: a case of COVID-19 (VITT) vaccine-induced immune thrombotic thrombocytopenia or a coincidence due to underlying risk factors: https://pubmed.ncbi.nlm.nih.gov/34820232/.
  629. Thrombocytopenia and splanchnic thrombosis after vaccination with Ad26.COV2.S successfully treated with transjugular intrahepatic intrahepatic portosystemic shunt and thrombectomy: https://onlinelibrary.wiley.com/doi/10.1002/ajh.26258
  630. Incidence of acute ischemic stroke after coronavirus vaccination in Indonesia: case series: https://pubmed.ncbi.nlm.nih.gov/34579636/
  631. Successful treatment of vaccine-induced immune immune thrombotic thrombocytopenia in a 26-year-old female patient: https://pubmed.ncbi.nlm.nih.gov/34614491/
  632. Case report: vaccine-induced immune immune thrombotic thrombocytopenia in a patient with pancreatic cancer after vaccination with messenger RNA-1273: https://pubmed.ncbi.nlm.nih.gov/34790684/
  633. Idiopathic idiopathic external jugular vein thrombophlebitis after coronavirus disease vaccination (COVID-19): https://pubmed.ncbi.nlm.nih.gov/33624509/.
  634. Squamous cell carcinoma of the lung with hemoptysis following vaccination with tozinameran (BNT162b2, Pfizer-BioNTech): https://pubmed.ncbi.nlm.nih.gov/34612003/
  635. Vaccine-induced thrombotic thrombocytopenia after Ad26.COV2.S vaccination in a man presenting as acute venous thromboembolism: https://pubmed.ncbi.nlm.nih.gov/34096082/
  636. Myocarditis associated with COVID-19 vaccination in three adolescent boys: https://pubmed.ncbi.nlm.nih.gov/34851078/.
  637. Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis after COVID-19 mRNA vaccination: a case series: https://pubmed.ncbi.nlm.nih.gov/34496880/
  638. Perimyocarditis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34866957/
  639. Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents after co-vaccination: https://pubmed.ncbi.nlm.nih.gov/34849657/.
  640. Myocarditis-induced sudden death after BNT162b2 COVID-19 mRNA vaccination in Korea: case report focusing on histopathological findings: https://pubmed.ncbi.nlm.nih.gov/34664804/
  641. Acute myocarditis after vaccination with COVID-19 mRNA in adults aged 18 years or older: https://pubmed.ncbi.nlm.nih.gov/34605853/
  642. Recurrence of acute myocarditis temporally associated with receipt of the 2019 coronavirus mRNA disease vaccine (COVID-19) in an adolescent male: https://pubmed.ncbi.nlm.nih.gov/34166671/
  643. Young male with myocarditis after mRNA-1273 coronavirus disease-2019 (COVID-19) mRNA vaccination: https://pubmed.ncbi.nlm.nih.gov/34744118/
  644. Acute myocarditis after SARS-CoV-2 vaccination in a 24-year-old male: https://pubmed.ncbi.nlm.nih.gov/34334935/.
  645. Ga-DOTATOC digital PET images of inflammatory cell infiltrates in myocarditis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34746968/
  646. Occurrence of acute infarct-like myocarditis after vaccination with COVID-19: just an accidental coincidence or rather a vaccination-associated autoimmune myocarditis?”: https://pubmed.ncbi.nlm.nih.gov/34333695/.
  647. Self-limited myocarditis presenting with chest pain and ST-segment elevation in adolescents after vaccination with BNT162b2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34180390/
  648. Myocarditis Following Immunization with COVID-19 mRNA Vaccines in Members of the U.S. Military: https://pubmed.ncbi.nlm.nih.gov/34185045/
  649. Myocarditis after BNT162b2 vaccination in a healthy male: https://pubmed.ncbi.nlm.nih.gov/34229940/
  650. Myopericarditis in a previously healthy adolescent male after COVID-19 vaccination: Case report: https://pubmed.ncbi.nlm.nih.gov/34133825/
  651. Acute myocarditis after SARS-CoV-2 mRNA-1273 mRNA vaccination: https://pubmed.ncbi.nlm.nih.gov/34308326/.
  652. Chest pain with abnormal electrocardiogram redevelopment after injection of COVID-19 vaccine manufactured by Moderna: https://pubmed.ncbi.nlm.nih.gov/34866106/
  653. Biopsy-proven lymphocytic myocarditis after first vaccination with COVID-19 mRNA in a 40-year-old man: case report: https://pubmed.ncbi.nlm.nih.gov/34487236/
  654. Multimodality imaging and histopathology in a young man presenting with fulminant lymphocytic myocarditis and cardiogenic shock after vaccination with mRNA-1273: https://pubmed.ncbi.nlm.nih.gov/34848416/
  655. Report of a case of myopericarditis after vaccination with BNT162b2 COVID-19 mRNA in a young Korean male: https://pubmed.ncbi.nlm.nih.gov/34636504/
  656. Acute myocarditis after Comirnaty vaccination in a healthy male with previous SARS-CoV-2 infection: https://pubmed.ncbi.nlm.nih.gov/34367386/
  657. Acute myocarditis in a young adult two days after vaccination with Pfizer: https://pubmed.ncbi.nlm.nih.gov/34709227/
  658. Case report: acute fulminant myocarditis and cardiogenic shock after messenger RNA coronavirus vaccination in 2019 requiring extracorporeal cardiopulmonary resuscitation: https://pubmed.ncbi.nlm.nih.gov/34778411/
  659. Acute myocarditis after 2019 coronavirus disease vaccination: https://pubmed.ncbi.nlm.nih.gov/34734821/
  660. A series of patients with myocarditis after vaccination against SARS-CoV-2 with mRNA-1279 and BNT162b2: https://pubmed.ncbi.nlm.nih.gov/34246585/
  661. Myopericarditis after Pfizer messenger ribonucleic acid coronavirus coronavirus disease vaccine in adolescents: https://pubmed.ncbi.nlm.nih.gov/34228985/
  662. Post-vaccination multisystem inflammatory syndrome in adults without evidence of prior SARS-CoV-2 infection: https://pubmed.ncbi.nlm.nih.gov/34852213/
  663. Acute myocarditis defined after vaccination with 2019 mRNA of coronavirus disease: https://pubmed.ncbi.nlm.nih.gov/34866122/
  664. Biventricular systolic dysfunction in acute myocarditis after SARS-CoV-2 mRNA-1273 vaccination: https://pubmed.ncbi.nlm.nih.gov/34601566/
  665. Myocarditis following COVID-19 vaccination: MRI study: https://pubmed.ncbi.nlm.nih.gov/34739045/.
  666. Acute myocarditis after COVID-19 vaccination: case report: https://docs.google.com/document/d/1Hc4bh_qNbZ7UVm5BLxkRdMPnnI9zcCsl/e
  667. Association of myocarditis with COVID-19 messenger RNA BNT162b2 vaccine COVID-19 in a case series of children: https://pubmed.ncbi.nlm.nih.gov/34374740/
  668. Clinical suspicion of myocarditis temporally related to COVID-19 vaccination in adolescents and young adults: https://pubmed.ncbi.nlm.nih.gov/34865500/
  669. Myocarditis following vaccination with Covid-19 in a large healthcare organization: https://pubmed.ncbi.nlm.nih.gov/34614329/
  670. AstraZeneca COVID-19 vaccine and Guillain-Barré syndrome in Tasmania: a causal link: https://pubmed.ncbi.nlm.nih.gov/34560365/
  671. COVID-19, Guillain-Barré and vaccineA dangerous mix: https://pubmed.ncbi.nlm.nih.gov/34108736/.
  672. Guillain-Barré syndrome after the first dose of Pfizer-BioNTech COVID-19 vaccine: case report and review of reported cases: https://pubmed.ncbi.nlm.nih.gov/34796417/.
  673. Guillain-Barre syndrome after BNT162b2 COVID-19 vaccine: https://link.springer.com/article/10.1007%2Fs10072-021-05523-5.
  674. COVID-19 adenovirus vaccines and Guillain-Barré syndrome with facial palsy: https://onlinelibrary.wiley.com/doi/10.1002/ana.26258.
  675. Association of receipt association of Ad26.COV2.S COVID-19 vaccine with presumed Guillain-Barre syndrome, February-July 2021: https://jamanetwork.com/journals/jama/fullarticle/2785009
  676. A case of Guillain-Barré syndrome after Pfizer COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34567447/
  677. Guillain-Barré syndrome associated with COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34648420/.
  678. Rate of recurrent Guillain-Barré syndrome after COVID-19 BNT162b2 mRNA vaccine: https://jamanetwork.com/journals/jamaneurology/fullarticle/2783708
  679. Guillain-Barre syndrome after COVID-19 vaccination in an adolescent: https://www.pedneur.com/article/S0887-8994(21)00221-6/fulltext.
  680. Guillain-Barre syndrome after ChAdOx1-S / nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34114256/.
  681. Guillain-Barre syndrome after COVID-19 mRNA-1273 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34767184/.
  682. Guillain-Barre syndrome following SARS-CoV-2 vaccination in 19 patients: https://pubmed.ncbi.nlm.nih.gov/34644738/.
  683. Guillain-Barre syndrome presenting with facial diplegia following vaccination with COVID-19 in two patients: https://pubmed.ncbi.nlm.nih.gov/34649856/
  684. A rare case of Guillain-Barré syndrome after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34671572/
  685. Neurological complications of COVID-19: Guillain-Barre syndrome after Pfizer COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33758714/
  686. COVID-19 vaccine causing Guillain-Barre syndrome, an uncommon potential side effect: https://pubmed.ncbi.nlm.nih.gov/34484780/
  687. Guillain-Barre syndrome after the first dose of COVID-19 vaccination: case report; https://pubmed.ncbi.nlm.nih.gov/34779385/.
  688. Miller Fisher syndrome after Pfizer COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34817727/.
  689. Miller Fisher syndrome after 2019 BNT162b2 mRNA coronavirus vaccination: https://pubmed.ncbi.nlm.nih.gov/34789193/.
  690. Bilateral facial weakness with a variant of paresthesia of Guillain-Barre syndrome after Vaxzevria COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34261746/
  691. Guillain-Barre syndrome after the first injection of ChAdOx1 nCoV-19 vaccine: first report: https://pubmed.ncbi.nlm.nih.gov/34217513/.
  692. A case of sensory ataxic Guillain-Barre syndrome with immunoglobulin G anti-GM1 antibodies after first dose of COVID-19 BNT162b2 mRNA vaccine (Pfizer): https://pubmed.ncbi.nlm.nih.gov/34871447/
  693. Reporting of acute inflammatory neuropathies with COVID-19 vaccines: subgroup disproportionality analysis in VigiBase: https://pubmed.ncbi.nlm.nih.gov/34579259/
  694. A variant of Guillain-Barré syndrome after SARS-CoV-2 vaccination: AMSAN: https://pubmed.ncbi.nlm.nih.gov/34370408/.
  695. A rare variant of Guillain-Barré syndrome after vaccination with Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34703690/.
  696. Guillain-Barré syndrome after SARS-CoV-2 vaccination in a patient with previous vaccine-associated Guillain-Barré syndrome: https://pubmed.ncbi.nlm.nih.gov/34810163/
  697. Guillain-Barré syndrome in an Australian state using mRNA and adenovirus-vector SARS-CoV-2 vaccines: https://onlinelibrary.wiley.com/doi/10.1002/ana.26218.
  698. Acute transverse myelitis after SARS-CoV-2 vaccination: case report and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34482455/.
  699. Variant Guillain-Barré syndrome occurring after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34114269/.
  700. Guillian-Barre syndrome with axonal variant temporally associated with Modern SARS-CoV-2 mRNA-based vaccine: https://pubmed.ncbi.nlm.nih.gov/34722067/
  701. Guillain-Barre syndrome after the first dose of SARS-CoV-2 vaccine: a temporary occurrence, not a causal association: https://pubmed.ncbi.nlm.nih.gov/33968610/
  702. SARS-CoV-2 vaccines can be complicated not only by Guillain-Barré syndrome but also by distal small fiber neuropathy: https://pubmed.ncbi.nlm.nih.gov/34525410/
  703. Clinical variant of Guillain-Barré syndrome with prominent facial diplegia after AstraZeneca 2019 coronavirus disease vaccine: https://pubmed.ncbi.nlm.nih.gov/34808658/
  704. Adverse event reporting and risk of Bell’s palsy after COVID-19 vaccination: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00646-0/fulltext.
  705. Bilateral facial nerve palsy and COVID-19 vaccination: causality or coincidence: https://pubmed.ncbi.nlm.nih.gov/34522557/
  706. Left Bell’s palsy after the first dose of mRNA-1273 SARS-CoV-2 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34763263/.
  707. Bell’s palsy after inactivated vaccination with COVID-19 in a patient with a history of recurrent Bell’s palsy: case report: https://pubmed.ncbi.nlm.nih.gov/34621891/
  708. Neurological complications after the first dose of COVID-19 vaccines and SARS-CoV-2 infection: https://pubmed.ncbi.nlm.nih.gov/34697502/
  709. Type I interferons as a potential mechanism linking COVID-19 mRNA vaccines with Bell’s palsy: https://pubmed.ncbi.nlm.nih.gov/33858693/
  710. Acute transverse myelitis following inactivated COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34370410/
  711. Acute transverse myelitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34579245/.
  712. A case of longitudinally extensive transverse myelitis following Covid-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34182207/
  713. Post COVID-19 transverse myelitis; a case report with review of the literature: https://pubmed.ncbi.nlm.nih.gov/34457267/.
  714. Beware of neuromyelitis optica spectrum disorder after vaccination with inactivated virus for COVID-19: https://pubmed.ncbi.nlm.nih.gov/34189662/
  715. Neuromyelitis optica in a healthy woman after vaccination against severe acute respiratory syndrome coronavirus 2 mRNA-1273: https://pubmed.ncbi.nlm.nih.gov/34660149/
  716. Acute bilateral bilateral optic neuritis/chiasm with longitudinal extensive transverse myelitis in long-standing stable multiple sclerosis after vector-based vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34131771/
  717. A case series of acute pericarditis after vaccination with COVID-19 in the context of recent reports from Europe and the United States: https://pubmed.ncbi.nlm.nih.gov/34635376/
  718. Acute pericarditis and cardiac tamponade after vaccination with Covid-19: https://pubmed.ncbi.nlm.nih.gov/34749492/
  719. Myocarditis and pericarditis in adolescents after the first and second doses of COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34849667/
  720. Perimyocarditis in adolescents after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34319393/
  721. Acute myopericarditis after COVID-19 vaccine in adolescents: https://pubmed.ncbi.nlm.nih.gov/34589238/
  722. Pericarditis after administration of the BNT162b2 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34149145/
  723. Case report: symptomatic pericarditis post COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34693198/.
  724. An outbreak of Still’s disease after COVID-19 vaccination in a 34-year-old patient: https://pubmed.ncbi.nlm.nih.gov/34797392/
  725. Hemophagocytic lymphohistiocytosis following COVID-19 vaccination (ChAdOx1 nCoV-19): https://pubmed.ncbi.nlm.nih.gov/34862234/
  726. Myocarditis after SARS-CoV-2 mRNA vaccination, a case series: https://pubmed.ncbi.nlm.nih.gov/34396358/.
  727. Miller-Fisher syndrome and Guillain-Barré syndrome overlap syndrome in a patient after Oxford-AstraZeneca SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34848426/.
  728. Immune-mediated disease outbreaks or new-onset disease in 27 subjects after mRNA/DNA vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/33946748/
  729. Post-mortem investigation of deaths after vaccination with COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34591186/
  730. Acute kidney injury with macroscopic hematuria and IgA nephropathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34352309/
  731. Relapse of immune thrombocytopenia after covid-19 vaccination in young male patient: https://pubmed.ncbi.nlm.nih.gov/34804803/.
  732. Immune thrombocytopenic purpura associated with COVID-19 mRNA vaccine Pfizer-BioNTech BNT16B2b2: https://pubmed.ncbi.nlm.nih.gov/34077572/
  733. Retinal hemorrhage after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34884407/.
  734. Case report: anti-neutrophil cytoplasmic antibody-associated vasculitis with acute renal failure and pulmonary hemorrhage can occur after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34859017/
  735. Intracerebral hemorrhage due to vasculitis following COVID-19 vaccination: case report: https://pubmed.ncbi.nlm.nih.gov/34783899/
  736. Peduncular, symptomatic cavernous bleeding after immune thrombocytopenia-induced SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34549178/.
  737. Brain death in a vaccinated patient with COVID-19 infection: https://pubmed.ncbi.nlm.nih.gov/34656887/
  738. Generalized purpura annularis telangiectodes after SARS-CoV-2 mRNA vaccination: https://pubmed.ncbi.nlm.nih.gov/34236717/.
  739. Lobar hemorrhage with ventricular rupture shortly after the first dose of a SARS-CoV-2 mRNA-based SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34729467/.
  740. A case of outbreak of macroscopic hematuria and IgA nephropathy after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33932458/
  741. Acral hemorrhage after administration of the second dose of SARS-CoV-2 vaccine. A post-vaccination reaction: https://pubmed.ncbi.nlm.nih.gov/34092400/742.
  742. Severe immune thrombocytopenic purpura after SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34754937/
  743. Gross hematuria after severe acute respiratory syndrome coronavirus 2 vaccination in 2 patients with IgA nephropathy: https://pubmed.ncbi.nlm.nih.gov/33771584/
  744. Autoimmune encephalitis after ChAdOx1-S SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34846583/
  745. COVID-19 vaccine and death: causality algorithm according to the WHO eligibility diagnosis: https://pubmed.ncbi.nlm.nih.gov/34073536/
  746. Bell’s palsy after vaccination with mRNA (BNT162b2) and inactivated (CoronaVac) SARS-CoV-2 vaccines: a case series and a nested case-control study: https://pubmed.ncbi.nlm.nih.gov/34411532/
  747. Epidemiology of myocarditis and pericarditis following mRNA vaccines in Ontario, Canada: by vaccine product, schedule, and interval: https://www.medrxiv.org/content/10.1101/2021.12.02.21267156v1
  748. Anaphylaxis following Covid-19 vaccine in a patient with cholinergic urticaria: https://pubmed.ncbi.nlm.nih.gov/33851711/
  749. Anaphylaxis induced by CoronaVac COVID-19 vaccine: clinical features and results of revaccination: https://pubmed.ncbi.nlm.nih.gov/34675550/.
  750. Anaphylaxis after Modern COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34734159/.
  751. Association of self-reported history of high-risk allergy with allergy symptoms after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34698847/
  752. Sex differences in the incidence of anaphylaxis to LNP-mRNA vaccines COVID-19: https://pubmed.ncbi.nlm.nih.gov/34020815/
  753. Allergic reactions, including anaphylaxis, after receiving the first dose of Pfizer-BioNTech COVID-19 vaccine – United States, December 14 to 23, 2020: https://pubmed.ncbi.nlm.nih.gov/33641264/
  754. Allergic reactions, including anaphylaxis, after receiving the first dose of Modern COVID-19 vaccine – United States, December 21, 2020 to January 10, 2021: https://pubmed.ncbi.nlm.nih.gov/33641268/
  755. Prolonged anaphylaxis to Pfizer 2019 coronavirus disease vaccine: a case report and mechanism of action: https://pubmed.ncbi.nlm.nih.gov/33834172/
  756. Anaphylaxis reactions to Pfizer BNT162b2 vaccine: report of 3 cases of anaphylaxis following vaccination with Pfizer BNT162b2: https://pubmed.ncbi.nlm.nih.gov/34579211/
  757. Biphasic anaphylaxis after first dose of 2019 messenger RNA coronavirus disease vaccine with positive polysorbate 80 skin test result: https://pubmed.ncbi.nlm.nih.gov/34343674/
  758. Acute myocardial infarction and myocarditis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34586408/
  759. Takotsubo syndrome after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34539938/.
  760. Takotsubo cardiomyopathy after coronavirus 2019 vaccination in patient on maintenance hemodialysis: https://pubmed.ncbi.nlm.nih.gov/34731486/.
  761. Premature myocardial infarction or side effect of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33824804/
  762. Myocardial infarction, stroke, and pulmonary embolism after BNT162b2 mRNA COVID-19 vaccine in persons aged 75 years or older: https://pubmed.ncbi.nlm.nih.gov/34807248/
  763. Kounis syndrome type 1 induced by inactivated SARS-COV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34148772/
  764. Acute myocardial infarction within 24 hours after COVID-19 vaccination: is Kounis syndrome the culprit: https://pubmed.ncbi.nlm.nih.gov/34702550/
  765. Deaths associated with the recently launched SARS-CoV-2 vaccination (Comirnaty®): https://pubmed.ncbi.nlm.nih.gov/33895650/
  766. Deaths associated with recently launched SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34425384/
  767. A case of acute encephalopathy and non-ST-segment elevation myocardial infarction after vaccination with mRNA-1273: possible adverse effect: https://pubmed.ncbi.nlm.nih.gov/34703815/
  768. COVID-19 vaccine-induced urticarial vasculitis: https://pubmed.ncbi.nlm.nih.gov/34369046/.
  769. ANCA-associated vasculitis after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34280507/.
  770. New-onset leukocytoclastic vasculitis after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34241833/
  771. Cutaneous small vessel vasculitis after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34529877/.
  772. Outbreak of leukocytoclastic vasculitis after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33928638/
  773. Leukocytoclastic vasculitis after exposure to COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34836739/
  774. Vasculitis and bursitis in [ 18 F] FDG-PET/CT after COVID-19 mRNA vaccine: post hoc ergo propter hoc?; https://pubmed.ncbi.nlm.nih.gov/34495381/.
  775. Cutaneous lymphocytic vasculitis after administration of COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34327795
  776. Cutaneous leukocytoclastic vasculitis induced by Sinovac COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34660867/.
  777. Case report: ANCA-associated vasculitis presenting with rhabdomyolysis and crescentic Pauci-Inmune glomerulonephritis after vaccination with Pfizer-BioNTech COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34659268/
  778. Reactivation of IgA vasculitis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34848431/
  779. Varicella-zoster virus-related small-vessel vasculitis after Pfizer-BioNTech COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34310759/.
  780. Imaging in vascular medicine: leukocytoclastic vasculitis after COVID-19 vaccine booster: https://pubmed.ncbi.nlm.nih.gov/34720009/
  781. A rare case of Henoch-Schönlein purpura after a case report of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34518812/
  782. Cutaneous vasculitis following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34611627/.
  783. Possible case of COVID-19 mRNA vaccine-induced small-vessel vasculitis: https://pubmed.ncbi.nlm.nih.gov/34705320/.
  784. IgA vasculitis following COVID-19 vaccination in an adult: https://pubmed.ncbi.nlm.nih.gov/34779011/
  785. Propylthiouracil-induced anti-neutrophil cytoplasmic antibody-associated vasculitis following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34451967/
  786. Coronavirus disease vaccine 2019 (COVID-19) in systemic lupus erythematosus and neutrophil anti-cytoplasmic antibody-associated vasculitis: https://pubmed.ncbi.nlm.nih.gov/33928459/
  787. Reactivation of IgA vasculitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34250509/
  788. Clinical and histopathologic spectrum of delayed adverse skin reactions after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34292611/.
  789. First description of immune complex vasculitis after COVID-19 vaccination with BNT162b2: case report: https://pubmed.ncbi.nlm.nih.gov/34530771/.
  790. Nephrotic syndrome and vasculitis after SARS-CoV-2 vaccine: true association or circumstantial: https://pubmed.ncbi.nlm.nih.gov/34245294/.
  791. Occurrence of de novo cutaneous vasculitis after vaccination against coronavirus disease (COVID-19): https://pubmed.ncbi.nlm.nih.gov/34599716/.
  792. Asymmetric cutaneous vasculitis after COVID-19 vaccination with unusual preponderance of eosinophils: https://pubmed.ncbi.nlm.nih.gov/34115904/.
  793. Henoch-Schönlein purpura occurring after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34247902/.
  794. Henoch-Schönlein purpura following the first dose of COVID-19 viral vector vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34696186/.
  795. Granulomatous vasculitis after AstraZeneca anti-SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34237323/.
  796. Acute retinal necrosis due to varicella zoster virus reactivation after vaccination with BNT162b2 COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34851795/.
  797. A case of generalized Sweet’s syndrome with vasculitis triggered by recent vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34849386/
  798. Small-vessel vasculitis following Oxford-AstraZeneca vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34310763/
  799. Relapse of microscopic polyangiitis after COVID-19 vaccination: case report: https://pubmed.ncbi.nlm.nih.gov/34251683/.
  800. Cutaneous vasculitis after severe acute respiratory syndrome coronavirus 2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34557622/.
  801. Recurrent herpes zoster after COVID-19 vaccination in patients with chronic urticaria on cyclosporine treatment – A report of 3 cases: https://pubmed.ncbi.nlm.nih.gov/34510694/
  802. Leukocytoclastic vasculitis after coronavirus disease vaccination 2019: https://pubmed.ncbi.nlm.nih.gov/34713472/803
  803. Outbreaks of mixed cryoglobulinemia vasculitis after vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34819272/
  804. Cutaneous small-vessel vasculitis after vaccination with a single dose of Janssen Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34337124/
  805. Case of immunoglobulin A vasculitis after vaccination against coronavirus disease 2019: https://pubmed.ncbi.nlm.nih.gov/34535924/
  806. Rapid progression of angioimmunoblastic T-cell lymphoma after BNT162b2 mRNA booster vaccination: case report: https://www.frontiersin.org/articles/10.3389/fmed.2021.798095/
  807. COVID-19 mRNA vaccination-induced lymphadenopathy mimics lymphoma progression on FDG PET / CT: https://pubmed.ncbi.nlm.nih.gov/33591026/
  808. Lymphadenopathy in COVID-19 vaccine recipients: diagnostic dilemma in oncology patients: https://pubmed.ncbi.nlm.nih.gov/33625300/
  809. Hypermetabolic lymphadenopathy after administration of BNT162b2 mRNA vaccine Covid-19: incidence assessed by [ 18 F] FDG PET-CT and relevance for study interpretation: https://pubmed.ncbi.nlm.nih.gov/33774684/
  810. Lymphadenopathy after COVID-19 vaccination: review of imaging findings: https://pubmed.ncbi.nlm.nih.gov/33985872/
  811. Evolution of bilateral hypermetabolic axillary hypermetabolic lymphadenopathy on FDG PET/CT after 2-dose COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34735411/
  812. Lymphadenopathy associated with COVID-19 vaccination on FDG PET/CT: distinguishing features in adenovirus-vectored vaccine: https://pubmed.ncbi.nlm.nih.gov/34115709/.
  813. COVID-19 vaccination-induced lymphadenopathy in a specialized breast imaging clinic in Israel: analysis of 163 cases: https://pubmed.ncbi.nlm.nih.gov/34257025/.
  814. COVID-19 vaccine-related axillary lymphadenopathy in breast cancer patients: case series with literature review: https://pubmed.ncbi.nlm.nih.gov/34836672/.
  815. Coronavirus disease vaccine 2019 mimics lymph node metastases in patients undergoing skin cancer follow-up: a single-center study: https://pubmed.ncbi.nlm.nih.gov/34280870/
  816. COVID-19 post-vaccination lymphadenopathy: report of fine-needle aspiration biopsy cytologic findings: https://pubmed.ncbi.nlm.nih.gov/34432391/
  817. Regional lymphadenopathy after COVID-19 vaccination: review of the literature and considerations for patient management in breast cancer care: https://pubmed.ncbi.nlm.nih.gov/34731748/
  818. Subclinical axillary lymphadenopathy associated with COVID-19 vaccination on screening mammography: https://pubmed.ncbi.nlm.nih.gov/34906409/
  819. Adverse events of COVID injection that may occur in children.Acute-onset supraclavicular lymphadenopathy coincident with intramuscular mRNA vaccination against COVID-19 may be related to the injection technique of the vaccine, Spain, January and February 2021: https://pubmed.ncbi.nlm.nih.gov/33706861/
  820. Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up by ultrasonography: https://pubmed.ncbi.nlm.nih.gov/34116295/
  821. Oxford-AstraZeneca COVID-19 vaccination induced lymphadenopathy on [18F] choline PET / CT, not just an FDG finding: https://pubmed.ncbi.nlm.nih.gov/33661328/
  822. Biphasic anaphylaxis after exposure to the first dose of Pfizer-BioNTech COVID-19 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34050949/
  823. Axillary adenopathy associated with COVID-19 vaccination: imaging findings and follow-up recommendations in 23 women: https://pubmed.ncbi.nlm.nih.gov/33624520/
  824. A case of cervical lymphadenopathy following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34141500/
  825. Unique imaging findings of neurologic phantosmia after Pfizer-BioNtech COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34096896/
  826. Thrombotic adverse events reported for Moderna, Pfizer, and Oxford-AstraZeneca COVID-19 vaccines: comparison of occurrence and clinical outcomes in the EudraVigilance database: https://pubmed.ncbi.nlm.nih.gov/34835256/
  827. Unilateral lymphadenopathy after COVID-19 vaccination: a practical management plan for radiologists of all specialties: https://pubmed.ncbi.nlm.nih.gov/33713605/
  828. Unilateral axillary adenopathy in the setting of COVID-19 vaccination: follow-up: https://pubmed.ncbi.nlm.nih.gov/34298342/
  829. A systematic review of cases of CNS demyelination following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34839149/
  830. Supraclavicular lymphadenopathy after COVID-19 vaccination: an increasing presentation in the two-week wait neck lump clinic: https://pubmed.ncbi.nlm.nih.gov/33685772/
  831. COVID-19 vaccine-related axillary and cervical lymphadenopathy in patients with current or previous breast cancer and other malignancies: cross-sectional imaging findings on MRI, CT and PET-CT: https://pubmed.ncbi.nlm.nih.gov/34719892/
  832. Adenopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625299/.
  833. Incidence of axillary adenopathy on breast imaging after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34292295/.
  834. COVID-19 vaccination and lower cervical lymphadenopathy in two-week neck lump clinic: a follow-up audit: https://pubmed.ncbi.nlm.nih.gov/33947605/.
  835. Cervical lymphadenopathy after coronavirus disease vaccination 2019: clinical features and implications for head and neck cancer services: https://pubmed.ncbi.nlm.nih.gov/34526175/
  836. Lymphadenopathy associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33786231/
  837. Evolution of lymphadenopathy on PET/MRI after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625301/.
  838. Autoimmune hepatitis triggered by SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34332438/.
  839. New-onset nephrotic syndrome after Janssen COVID-19 vaccination: case report and literature review: https://pubmed.ncbi.nlm.nih.gov/34342187/.
  840. Massive cervical lymphadenopathy following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34601889/
  841. ANCA glomerulonephritis following Modern COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34081948/
  842. Extensive longitudinal transverse myelitis following AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34507942/.
  843. Systemic capillary extravasation syndrome after vaccination with ChAdOx1 nCOV-19 (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34362727/
  844. Unilateral axillary lymphadenopathy related to COVID-19 vaccine: pattern on screening breast MRI allowing benign evaluation: https://pubmed.ncbi.nlm.nih.gov/34325221/
  845. Axillary lymphadenopathy in patients with recent Covid-19 vaccination: a new diagnostic dilemma: https://pubmed.ncbi.nlm.nih.gov/34825530/.
  846. Minimal change disease and acute kidney injury after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34000278/
  847. COVID-19 vaccine-induced unilateral axillary adenopathy: follow-up evaluation in the USA: https://pubmed.ncbi.nlm.nih.gov/34655312/.
  848. Gastroparesis after Pfizer-BioNTech COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34187985/.
  849. Acute-onset supraclavicular lymphadenopathy coincident with intramuscular mRNA vaccination against COVID-19 may be related to the injection technique of the vaccine, Spain, January and February 2021: https://pubmed.ncbi.nlm.nih.gov/33706861/
  850. Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up by ultrasonography: https://pubmed.ncbi.nlm.nih.gov/34116295/
  851. Oxford-AstraZeneca COVID-19 vaccination induced lymphadenopathy on [18F] choline PET / CT, not just an FDG finding: https://pubmed.ncbi.nlm.nih.gov/33661328/
  852. Biphasic anaphylaxis after exposure to the first dose of Pfizer-BioNTech COVID-19 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34050949/
  853. Axillary adenopathy associated with COVID-19 vaccination: imaging findings and follow-up recommendations in 23 women: https://pubmed.ncbi.nlm.nih.gov/33624520/
  854. A case of cervical lymphadenopathy following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34141500/
  855. Unique imaging findings of neurologic phantosmia after Pfizer-BioNtech COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34096896/
  856. Thrombotic adverse events reported for Moderna, Pfizer, and Oxford-AstraZeneca COVID-19 vaccines: comparison of occurrence and clinical outcomes in the EudraVigilance database: https://pubmed.ncbi.nlm.nih.gov/34835256/
  857. Unilateral lymphadenopathy after COVID-19 vaccination: a practical management plan for radiologists of all specialties: https://pubmed.ncbi.nlm.nih.gov/33713605/
  858. Unilateral axillary adenopathy in the setting of COVID-19 vaccination: follow-up: https://pubmed.ncbi.nlm.nih.gov/34298342/
  859. A systematic review of cases of CNS demyelination following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34839149/
  860. Supraclavicular lymphadenopathy after COVID-19 vaccination: an increasing presentation in the two-week wait neck lump clinic: https://pubmed.ncbi.nlm.nih.gov/33685772/
  861. COVID-19 vaccine-related axillary and cervical lymphadenopathy in patients with current or previous breast cancer and other malignancies: cross-sectional imaging findings on MRI, CT and PET-CT: https://pubmed.ncbi.nlm.nih.gov/34719892/
  862. Adenopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625299/.
  863. Incidence of axillary adenopathy on breast imaging after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34292295/.
  864. COVID-19 vaccination and lower cervical lymphadenopathy in two-week neck lump clinic: a follow-up audit: https://pubmed.ncbi.nlm.nih.gov/33947605/.
  865. Cervical lymphadenopathy after coronavirus disease vaccination 2019: clinical features and implications for head and neck cancer services: https://pubmed.ncbi.nlm.nih.gov/34526175/
  866. Lymphadenopathy associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33786231/
  867. Evolution of lymphadenopathy on PET/MRI after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625301/.
  868. Autoimmune hepatitis triggered by SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34332438/.
  869. New-onset nephrotic syndrome after Janssen COVID-19 vaccination: case report and literature review: https://pubmed.ncbi.nlm.nih.gov/34342187/.
  870. Massive cervical lymphadenopathy following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34601889/
  871. ANCA glomerulonephritis following Modern COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34081948/
  872. Extensive longitudinal transverse myelitis following AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34507942/.
  873. Systemic capillary extravasation syndrome after vaccination with ChAdOx1 nCOV-19 (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34362727/
  874. Unilateral axillary lymphadenopathy related to COVID-19 vaccine: pattern on screening breast MRI allowing benign evaluation: https://pubmed.ncbi.nlm.nih.gov/34325221/
  875. Axillary lymphadenopathy in patients with recent Covid-19 vaccination: a new diagnostic dilemma: https://pubmed.ncbi.nlm.nih.gov/34825530/.
  876. Minimal change disease and acute kidney injury after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34000278/
  877. COVID-19 vaccine-induced unilateral axillary adenopathy: follow-up evaluation in the USA: https://pubmed.ncbi.nlm.nih.gov/34655312/.
  878. Gastroparesis after Pfizer-BioNTech COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34187985/.
  879. Abbate, A., Gavin, J., Madanchi, N., Kim, C., Shah, P. R., Klein, K., . . . Danielides, S. (2021). Fulminant myocarditis and systemic hyperinflammation temporally associated with BNT162b2 mRNA COVID-19 vaccination in two patients. Int J Cardiol, 340, 119-121. doi:10.1016/j.ijcard.2021.08.018. https://www.ncbi.nlm.nih.gov/pubmed/34416319
  880. Abu Mouch, S., Roguin, A., Hellou, E., Ishai, A., Shoshan, U., Mahamid, L., . . . Berar Yanay, N. (2021). Myocarditis following COVID-19 mRNA vaccination. Vaccine, 39(29), 3790-3793. doi:10.1016/j.vaccine.2021.05.087. https://www.ncbi.nlm.nih.gov/pubmed/34092429
  881. Albert, E., Aurigemma, G., Saucedo, J., & Gerson, D. S. (2021). Myocarditis following COVID-19 vaccination. Radiol Case Rep, 16(8), 2142-2145. doi:10.1016/j.radcr.2021.05.033. https://www.ncbi.nlm.nih.gov/pubmed/34025885
  882. Aye, Y. N., Mai, A. S., Zhang, A., Lim, O. Z. H., Lin, N., Ng, C. H., . . . Chew, N. W. S. (2021). Acute Myocardial Infarction and Myocarditis following COVID-19 Vaccination. QJM. doi:10.1093/qjmed/hcab252. https://www.ncbi.nlm.nih.gov/pubmed/34586408
  883. Azir, M., Inman, B., Webb, J., & Tannenbaum, L. (2021). STEMI Mimic: Focal Myocarditis in an Adolescent Patient After mRNA COVID-19 Vaccine. J Emerg Med, 61(6), e129-e132. doi:10.1016/j.jemermed.2021.09.017. https://www.ncbi.nlm.nih.gov/pubmed/34756746
  884. Barda, N., Dagan, N., Ben-Shlomo, Y., Kepten, E., Waxman, J., Ohana, R., . . . Balicer, R. D. (2021). Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Engl J Med, 385(12), 1078-1090. doi:10.1056/NEJMoa2110475. https://www.ncbi.nlm.nih.gov/pubmed/34432976
  885. Bhandari, M., Pradhan, A., Vishwakarma, P., & Sethi, R. (2021). Coronavirus and cardiovascular manifestations- getting to the heart of the matter. World J Cardiol, 13(10), 556-565. doi:10.4330/wjc.v13.i10.556. https://www.ncbi.nlm.nih.gov/pubmed/34754400
  886. Bozkurt, B., Kamat, I., & Hotez, P. J. (2021). Myocarditis With COVID-19 mRNA Vaccines. Circulation, 144(6), 471-484. doi:10.1161/CIRCULATIONAHA.121.056135. https://www.ncbi.nlm.nih.gov/pubmed/34281357
  887. Buchhorn, R., Meyer, C., Schulze-Forster, K., Junker, J., & Heidecke, H. (2021). Autoantibody Release in Children after Corona Virus mRNA Vaccination: A Risk Factor of Multisystem Inflammatory Syndrome? Vaccines (Basel), 9(11). doi:10.3390/vaccines9111353. https://www.ncbi.nlm.nih.gov/pubmed/34835284
  888. Calcaterra, G., Bassareo, P. P., Barilla, F., Romeo, F., & Mehta, J. L. (2022). Concerning the unexpected prothrombotic state following some coronavirus disease 2019 vaccines. J Cardiovasc Med (Hagerstown), 23(2), 71-74. doi:10.2459/JCM.0000000000001232. https://www.ncbi.nlm.nih.gov/pubmed/34366403
  889. Calcaterra, G., Mehta, J. L., de Gregorio, C., Butera, G., Neroni, P., Fanos, V., & Bassareo, P. P. (2021). COVID 19 Vaccine for Adolescents. Concern about Myocarditis and Pericarditis. Pediatr Rep, 13(3), 530-533. doi:10.3390/pediatric13030061. https://www.ncbi.nlm.nih.gov/pubmed/34564344
  890. Chai, Q., Nygaard, U., Schmidt, R. C., Zaremba, T., Moller, A. M., & Thorvig, C. M. (2022). Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-BioNTech COVID-19 vaccine. Acta Paediatr, 111(1), 125-127. doi:10.1111/apa.16141. https://www.ncbi.nlm.nih.gov/pubmed/34617315
  891. Chamling, B., Vehof, V., Drakos, S., Weil, M., Stalling, P., Vahlhaus, C., . . . Yilmaz, A. (2021). Occurrence of acute infarct-like myocarditis following COVID-19 vaccination: just an accidental co-incidence or rather vaccination-associated autoimmune myocarditis? Clin Res Cardiol, 110(11), 1850-1854. doi:10.1007/s00392-021-01916-w. https://www.ncbi.nlm.nih.gov/pubmed/34333695
  892. Chang, J. C., & Hawley, H. B. (2021). Vaccine-Associated Thrombocytopenia and Thrombosis: Venous Endotheliopathy Leading to Venous Combined Micro-Macrothrombosis. Medicina (Kaunas), 57(11). doi:10.3390/medicina57111163. https://www.ncbi.nlm.nih.gov/pubmed/34833382
  893. Chelala, L., Jeudy, J., Hossain, R., Rosenthal, G., Pietris, N., & White, C. (2021). Cardiac MRI Findings of Myocarditis After COVID-19 mRNA Vaccination in Adolescents. AJR Am J Roentgenol. doi:10.2214/AJR.21.26853. https://www.ncbi.nlm.nih.gov/pubmed/34704459
  894. Choi, S., Lee, S., Seo, J. W., Kim, M. J., Jeon, Y. H., Park, J. H., . . . Yeo, N. S. (2021). Myocarditis-induced Sudden Death after BNT162b2 mRNA COVID-19 Vaccination in Korea: Case Report Focusing on Histopathological Findings. J Korean Med Sci, 36(40), e286. doi:10.3346/jkms.2021.36.e286. https://www.ncbi.nlm.nih.gov/pubmed/34664804
  895. Chouchana, L., Blet, A., Al-Khalaf, M., Kafil, T. S., Nair, G., Robblee, J., . . . Liu, P. P. (2021). Features of Inflammatory Heart Reactions Following mRNA COVID-19 Vaccination at a Global Level. Clin Pharmacol Ther. doi:10.1002/cpt.2499. https://www.ncbi.nlm.nih.gov/pubmed/34860360
  896. Chua, G. T., Kwan, M. Y. W., Chui, C. S. L., Smith, R. D., Cheung, E. C., Tian, T., . . . Ip, P. (2021). Epidemiology of Acute Myocarditis/Pericarditis in Hong Kong Adolescents Following Comirnaty Vaccination. Clin Infect Dis. doi:10.1093/cid/ciab989. https://www.ncbi.nlm.nih.gov/pubmed/34849657
  897. Clarke, R., & Ioannou, A. (2021). Should T2 mapping be used in cases of recurrent myocarditis to differentiate between the acute inflammation and chronic scar? J Pediatr. doi:10.1016/j.jpeds.2021.12.026. https://www.ncbi.nlm.nih.gov/pubmed/34933012
  898. Colaneri, M., De Filippo, M., Licari, A., Marseglia, A., Maiocchi, L., Ricciardi, A., . . . Bruno, R. (2021). COVID vaccination and asthma exacerbation: might there be a link? Int J Infect Dis, 112, 243-246. doi:10.1016/j.ijid.2021.09.026. https://www.ncbi.nlm.nih.gov/pubmed/34547487
  899. Das, B. B., Kohli, U., Ramachandran, P., Nguyen, H. H., Greil, G., Hussain, T., . . . Khan, D. (2021). Myopericarditis after messenger RNA Coronavirus Disease 2019 Vaccination in Adolescents 12 to 18 Years of Age. J Pediatr, 238, 26-32 e21. doi:10.1016/j.jpeds.2021.07.044. https://www.ncbi.nlm.nih.gov/pubmed/34339728
  900. Das, B. B., Moskowitz, W. B., Taylor, M. B., & Palmer, A. (2021). Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination: What Do We Know So Far? Children (Basel), 8(7). doi:10.3390/children8070607. https://www.ncbi.nlm.nih.gov/pubmed/34356586
  901. Deb, A., Abdelmalek, J., Iwuji, K., & Nugent, K. (2021). Acute Myocardial Injury Following COVID-19 Vaccination: A Case Report and Review of Current Evidence from Vaccine Adverse Events Reporting System Database. J Prim Care Community Health, 12, 21501327211029230. doi:10.1177/21501327211029230. https://www.ncbi.nlm.nih.gov/pubmed/34219532
  902. Dickey, J. B., Albert, E., Badr, M., Laraja, K. M., Sena, L. M., Gerson, D. S., . . . Aurigemma, G. P. (2021). A Series of Patients With Myocarditis Following SARS-CoV-2 Vaccination With mRNA-1279 and BNT162b2. JACC Cardiovasc Imaging, 14(9), 1862-1863. doi:10.1016/j.jcmg.2021.06.003. https://www.ncbi.nlm.nih.gov/pubmed/34246585
  903. Dimopoulou, D., Spyridis, N., Vartzelis, G., Tsolia, M. N., & Maritsi, D. N. (2021). Safety and tolerability of the COVID-19 mRNA-vaccine in adolescents with juvenile idiopathic arthritis on treatment with TNF-inhibitors. Arthritis Rheumatol. doi:10.1002/art.41977. https://www.ncbi.nlm.nih.gov/pubmed/34492161
  904. Dimopoulou, D., Vartzelis, G., Dasoula, F., Tsolia, M., & Maritsi, D. (2021). Immunogenicity of the COVID-19 mRNA vaccine in adolescents with juvenile idiopathic arthritis on treatment with TNF inhibitors. Ann Rheum Dis. doi:10.1136/annrheumdis-2021-221607. https://www.ncbi.nlm.nih.gov/pubmed/34844930
  905. Ehrlich, P., Klingel, K., Ohlmann-Knafo, S., Huttinger, S., Sood, N., Pickuth, D., & Kindermann, M. (2021). Biopsy-proven lymphocytic myocarditis following first mRNA COVID-19 vaccination in a 40-year-old male: case report. Clin Res Cardiol, 110(11), 1855-1859. doi:10.1007/s00392-021-01936-6. https://www.ncbi.nlm.nih.gov/pubmed/34487236
  906. El Sahly, H. M., Baden, L. R., Essink, B., Doblecki-Lewis, S., Martin, J. M., Anderson, E. J., . . . Group, C. S. (2021). Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N Engl J Med, 385(19), 1774-1785. doi:10.1056/NEJMoa2113017. https://www.ncbi.nlm.nih.gov/pubmed/34551225
  907. Facetti, S., Giraldi, M., Vecchi, A. L., Rogiani, S., & Nassiacos, D. (2021). [Acute myocarditis in a young adult two days after Pfizer vaccination]. G Ital Cardiol (Rome), 22(11), 891-893. doi:10.1714/3689.36746. https://www.ncbi.nlm.nih.gov/pubmed/34709227
  908. Fazlollahi, A., Zahmatyar, M., Noori, M., Nejadghaderi, S. A., Sullman, M. J. M., Shekarriz-Foumani, R., . . . Safiri, S. (2021). Cardiac complications following mRNA COVID-19 vaccines: A systematic review of case reports and case series. Rev Med Virol, e2318. doi:10.1002/rmv.2318. https://www.ncbi.nlm.nih.gov/pubmed/34921468
  909. Fazolo, T., Lima, K., Fontoura, J. C., de Souza, P. O., Hilario, G., Zorzetto, R., . . . Bonorino, C. (2021). Pediatric COVID-19 patients in South Brazil show abundant viral mRNA and strong specific anti-viral responses. Nat Commun, 12(1), 6844. doi:10.1038/s41467-021-27120-y. https://www.ncbi.nlm.nih.gov/pubmed/34824230
  910. Fikenzer, S., & Laufs, U. (2021). Correction to: Response to Letter to the editors referring to Fikenzer, S., Uhe, T., Lavall, D., Rudolph, U., Falz, R., Busse, M., Hepp, P., & Laufs, U. (2020). Effects of surgical and FFP2/N95 face masks on cardiopulmonary exercise capacity. Clinical research in cardiology: official journal of the German Cardiac Society, 1-9. Advance online publication. https://doi.org/10.1007/s00392-020-01704-y. Clin Res Cardiol, 110(8), 1352. doi:10.1007/s00392-021-01896-x. https://www.ncbi.nlm.nih.gov/pubmed/34170372
  911. Foltran, D., Delmas, C., Flumian, C., De Paoli, P., Salvo, F., Gautier, S., . . . Montastruc, F. (2021). Myocarditis and Pericarditis in Adolescents after First and Second doses of mRNA COVID-19 Vaccines. Eur Heart J Qual Care Clin Outcomes. doi:10.1093/ehjqcco/qcab090. https://www.ncbi.nlm.nih.gov/pubmed/34849667
  912. Forgacs, D., Jang, H., Abreu, R. B., Hanley, H. B., Gattiker, J. L., Jefferson, A. M., & Ross, T. M. (2021). SARS-CoV-2 mRNA Vaccines Elicit Different Responses in Immunologically Naive and Pre-Immune Humans. Front Immunol, 12, 728021. doi:10.3389/fimmu.2021.728021. https://www.ncbi.nlm.nih.gov/pubmed/34646267
  913. Furer, V., Eviatar, T., Zisman, D., Peleg, H., Paran, D., Levartovsky, D., . . . Elkayam, O. (2021). Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. Ann Rheum Dis, 80(10), 1330-1338. doi:10.1136/annrheumdis-2021-220647. https://www.ncbi.nlm.nih.gov/pubmed/34127481
  914. Galindo, R., Chow, H., & Rongkavilit, C. (2021). COVID-19 in Children: Clinical Manifestations and Pharmacologic Interventions Including Vaccine Trials. Pediatr Clin North Am, 68(5), 961-976. doi:10.1016/j.pcl.2021.05.004. https://www.ncbi.nlm.nih.gov/pubmed/34538306
  915. Gargano, J. W., Wallace, M., Hadler, S. C., Langley, G., Su, J. R., Oster, M. E., . . . Oliver, S. E. (2021). Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices – United States, June 2021. MMWR Morb Mortal Wkly Rep, 70(27), 977-982. doi:10.15585/mmwr.mm7027e2. https://www.ncbi.nlm.nih.gov/pubmed/34237049
  916. Gatti, M., Raschi, E., Moretti, U., Ardizzoni, A., Poluzzi, E., & Diemberger, I. (2021). Influenza Vaccination and Myo-Pericarditis in Patients Receiving Immune Checkpoint Inhibitors: Investigating the Likelihood of Interaction through the Vaccine Adverse Event Reporting System and VigiBase. Vaccines (Basel), 9(1). doi:10.3390/vaccines9010019. https://www.ncbi.nlm.nih.gov/pubmed/33406694
  917. Gautam, N., Saluja, P., Fudim, M., Jambhekar, K., Pandey, T., & Al’Aref, S. (2021). A Late Presentation of COVID-19 Vaccine-Induced Myocarditis. Cureus, 13(9), e17890. doi:10.7759/cureus.17890. https://www.ncbi.nlm.nih.gov/pubmed/34660088
  918. Gellad, W. F. (2021). Myocarditis after vaccination against covid-19. BMJ, 375, n3090. doi:10.1136/bmj.n3090. https://www.ncbi.nlm.nih.gov/pubmed/34916217
  919. Greenhawt, M., Abrams, E. M., Shaker, M., Chu, D. K., Khan, D., Akin, C., . . . Golden, D. B. K. (2021). The Risk of Allergic Reaction to SARS-CoV-2 Vaccines and Recommended Evaluation and Management: A Systematic Review, Meta-Analysis, GRADE Assessment, and International Consensus Approach. J Allergy Clin Immunol Pract, 9(10), 3546-3567. doi:10.1016/j.jaip.2021.06.006. https://www.ncbi.nlm.nih.gov/pubmed/34153517
  920. Haaf, P., Kuster, G. M., Mueller, C., Berger, C. T., Monney, P., Burger, P., . . . Tanner, F. C. (2021). The very low risk of myocarditis and pericarditis after mRNA COVID-19 vaccination should not discourage vaccination. Swiss Med Wkly, 151, w30087. doi:10.4414/smw.2021.w30087. https://www.ncbi.nlm.nih.gov/pubmed/34668687
  921. Hasnie, A. A., Hasnie, U. A., Patel, N., Aziz, M. U., Xie, M., Lloyd, S. G., & Prabhu, S. D. (2021). Perimyocarditis following first dose of the mRNA-1273 SARS-CoV-2 (Moderna) vaccine in a healthy young male: a case report. BMC Cardiovasc Disord, 21(1), 375. doi:10.1186/s12872-021-02183-3. https://www.ncbi.nlm.nih.gov/pubmed/34348657
  922. Hause, A. M., Gee, J., Baggs, J., Abara, W. E., Marquez, P., Thompson, D., . . . Shay, D. K. (2021). COVID-19 Vaccine Safety in Adolescents Aged 12-17 Years – United States, December 14, 2020-July 16, 2021. MMWR Morb Mortal Wkly Rep, 70(31), 1053-1058. doi:10.15585/mmwr.mm7031e1. https://www.ncbi.nlm.nih.gov/pubmed/34351881
  923. Helms, J. M., Ansteatt, K. T., Roberts, J. C., Kamatam, S., Foong, K. S., Labayog, J. S., & Tarantino, M. D. (2021). Severe, Refractory Immune Thrombocytopenia Occurring After SARS-CoV-2 Vaccine. J Blood Med, 12, 221-224. doi:10.2147/JBM.S307047. https://www.ncbi.nlm.nih.gov/pubmed/33854395
  924. Hippisley-Cox, J., Patone, M., Mei, X. W., Saatci, D., Dixon, S., Khunti, K., . . . Coupland, C. A. C. (2021). Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study. BMJ, 374, n1931. doi:10.1136/bmj.n1931. https://www.ncbi.nlm.nih.gov/pubmed/34446426
  925. Ho, J. S., Sia, C. H., Ngiam, J. N., Loh, P. H., Chew, N. W., Kong, W. K., & Poh, K. K. (2021). A review of COVID-19 vaccination and the reported cardiac manifestations. Singapore Med J. doi:10.11622/smedj.2021210. https://www.ncbi.nlm.nih.gov/pubmed/34808708
  926. Iguchi, T., Umeda, H., Kojima, M., Kanno, Y., Tanaka, Y., Kinoshita, N., & Sato, D. (2021). Cumulative Adverse Event Reporting of Anaphylaxis After mRNA COVID-19 Vaccine (Pfizer-BioNTech) Injections in Japan: The First-Month Report. Drug Saf, 44(11), 1209-1214. doi:10.1007/s40264-021-01104-9. https://www.ncbi.nlm.nih.gov/pubmed/34347278
  927. In brief: Myocarditis with the Pfizer/BioNTech and Moderna COVID-19 vaccines. (2021). Med Lett Drugs Ther, 63(1629), e9. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34544112https://www.ncbi.nlm.nih.gov/pubmed/3454412
  928. Ioannou, A. (2021a). Myocarditis should be considered in those with a troponin rise and unobstructed coronary arteries following Pfizer-BioNTech COVID-19 vaccination. QJM. doi:10.1093/qjmed/hcab231. https://www.ncbi.nlm.nih.gov/pubmed/34463755
  929. Ioannou, A. (2021b). T2 mapping should be utilised in cases of suspected myocarditis to confirm an acute inflammatory process. QJM. doi:10.1093/qjmed/hcab326. https://www.ncbi.nlm.nih.gov/pubmed/34931681
  930. Isaak, A., Feisst, A., & Luetkens, J. A. (2021). Myocarditis Following COVID-19 Vaccination. Radiology, 301(1), E378-E379. doi:10.1148/radiol.2021211766. https://www.ncbi.nlm.nih.gov/pubmed/34342500
  931. Istampoulouoglou, I., Dimitriou, G., Spani, S., Christ, A., Zimmermanns, B., Koechlin, S., . . . Leuppi-Taegtmeyer, A. B. (2021). Myocarditis and pericarditis in association with COVID-19 mRNA-vaccination: cases from a regional pharmacovigilance centre. Glob Cardiol Sci Pract, 2021(3), e202118. doi:10.21542/gcsp.2021.18. https://www.ncbi.nlm.nih.gov/pubmed/34805376
  932. Jaafar, R., Boschi, C., Aherfi, S., Bancod, A., Le Bideau, M., Edouard, S., . . . La Scola, B. (2021). High Individual Heterogeneity of Neutralizing Activities against the Original Strain and Nine Different Variants of SARS-CoV-2. Viruses, 13(11). doi:10.3390/v13112177. https://www.ncbi.nlm.nih.gov/pubmed/34834983
  933. Jain, S. S., Steele, J. M., Fonseca, B., Huang, S., Shah, S., Maskatia, S. A., . . . Grosse-Wortmann, L. (2021). COVID-19 Vaccination-Associated Myocarditis in Adolescents. Pediatrics, 148(5). doi:10.1542/peds.2021-053427. https://www.ncbi.nlm.nih.gov/pubmed/34389692
  934. Jhaveri, R., Adler-Shohet, F. C., Blyth, C. C., Chiotos, K., Gerber, J. S., Green, M., . . . Zaoutis, T. (2021). Weighing the Risks of Perimyocarditis With the Benefits of SARS-CoV-2 mRNA Vaccination in Adolescents. J Pediatric Infect Dis Soc, 10(10), 937-939. doi:10.1093/jpids/piab061. https://www.ncbi.nlm.nih.gov/pubmed/34270752
  935. Kaneta, K., Yokoi, K., Jojima, K., Kotooka, N., & Node, K. (2021). Young Male With Myocarditis Following mRNA-1273 Vaccination Against Coronavirus Disease-2019 (COVID-19). Circ J. doi:10.1253/circj.CJ-21-0818. https://www.ncbi.nlm.nih.gov/pubmed/34744118
  936. Kaul, R., Sreenivasan, J., Goel, A., Malik, A., Bandyopadhyay, D., Jin, C., . . . Panza, J. A. (2021). Myocarditis following COVID-19 vaccination. Int J Cardiol Heart Vasc, 36, 100872. doi:10.1016/j.ijcha.2021.100872. https://www.ncbi.nlm.nih.gov/pubmed/34568540
  937. Khogali, F., & Abdelrahman, R. (2021). Unusual Presentation of Acute Perimyocarditis Following SARS-COV-2 mRNA-1237 Moderna Vaccination. Cureus, 13(7), e16590. doi:10.7759/cureus.16590. https://www.ncbi.nlm.nih.gov/pubmed/34447639
  938. Kim, H. W., Jenista, E. R., Wendell, D. C., Azevedo, C. F., Campbell, M. J., Darty, S. N., . . . Kim, R. J. (2021). Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. JAMA Cardiol, 6(10), 1196-1201. doi:10.1001/jamacardio.2021.2828. https://www.ncbi.nlm.nih.gov/pubmed/34185046
  939. Kim, I. C., Kim, H., Lee, H. J., Kim, J. Y., & Kim, J. Y. (2021). Cardiac Imaging of Acute Myocarditis Following COVID-19 mRNA Vaccination. J Korean Med Sci, 36(32), e229. doi:10.3346/jkms.2021.36.e229. https://www.ncbi.nlm.nih.gov/pubmed/34402228
  940. King, W. W., Petersen, M. R., Matar, R. M., Budweg, J. B., Cuervo Pardo, L., & Petersen, J. W. (2021). Myocarditis following mRNA vaccination against SARS-CoV-2, a case series. Am Heart J Plus, 8, 100042. doi:10.1016/j.ahjo.2021.100042. https://www.ncbi.nlm.nih.gov/pubmed/34396358
  941. Klein, N. P., Lewis, N., Goddard, K., Fireman, B., Zerbo, O., Hanson, K. E., . . . Weintraub, E. S. (2021). Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA, 326(14), 1390-1399. doi:10.1001/jama.2021.15072. https://www.ncbi.nlm.nih.gov/pubmed/34477808
  942. Klimek, L., Bergmann, K. C., Brehler, R., Pfutzner, W., Zuberbier, T., Hartmann, K., . . . Worm, M. (2021). Practical handling of allergic reactions to COVID-19 vaccines: A position paper from German and Austrian Allergy Societies AeDA, DGAKI, GPA and OGAI. Allergo J Int, 1-17. doi:10.1007/s40629-021-00165-7. https://www.ncbi.nlm.nih.gov/pubmed/33898162
  943. Klimek, L., Novak, N., Hamelmann, E., Werfel, T., Wagenmann, M., Taube, C., . . . Worm, M. (2021). Severe allergic reactions after COVID-19 vaccination with the Pfizer/BioNTech vaccine in Great Britain and USA: Position statement of the German Allergy Societies: Medical Association of German Allergologists (AeDA), German Society for Allergology and Clinical Immunology (DGAKI) and Society for Pediatric Allergology and Environmental Medicine (GPA). Allergo J Int, 30(2), 51-55. doi:10.1007/s40629-020-00160-4. https://www.ncbi.nlm.nih.gov/pubmed/33643776
  944. Kohli, U., Desai, L., Chowdhury, D., Harahsheh, A. S., Yonts, A. B., Ansong, A., . . . Ang, J. Y. (2021). mRNA Coronavirus-19 Vaccine-Associated Myopericarditis in Adolescents: A Survey Study. J Pediatr. doi:10.1016/j.jpeds.2021.12.025. https://www.ncbi.nlm.nih.gov/pubmed/34952008
  945. Kostoff, R. N., Calina, D., Kanduc, D., Briggs, M. B., Vlachoyiannopoulos, P., Svistunov, A. A., & Tsatsakis, A. (2021a). Erratum to “Why are we vaccinating children against COVID-19?” [Toxicol. Rep. 8C (2021) 1665-1684 / 1193]. Toxicol Rep, 8, 1981. doi:10.1016/j.toxrep.2021.10.003. https://www.ncbi.nlm.nih.gov/pubmed/34642628
  946. Kostoff, R. N., Calina, D., Kanduc, D., Briggs, M. B., Vlachoyiannopoulos, P., Svistunov, A. A., & Tsatsakis, A. (2021b). Why are we vaccinating children against COVID-19? Toxicol Rep, 8, 1665-1684. doi:10.1016/j.toxrep.2021.08.010. https://www.ncbi.nlm.nih.gov/pubmed/34540594
  947. Kremsner, P. G., Mann, P., Kroidl, A., Leroux-Roels, I., Schindler, C., Gabor, J. J., . . . Group, C.-N.-S. (2021). Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2 : A phase 1 randomized clinical trial. Wien Klin Wochenschr, 133(17-18), 931-941. doi:10.1007/s00508-021-01922-y. https://www.ncbi.nlm.nih.gov/pubmed/34378087
  948. Kustin, T., Harel, N., Finkel, U., Perchik, S., Harari, S., Tahor, M., . . . Stern, A. (2021). Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med, 27(8), 1379-1384. doi:10.1038/s41591-021-01413-7. https://www.ncbi.nlm.nih.gov/pubmed/34127854
  949. Kwan, M. Y. W., Chua, G. T., Chow, C. B., Tsao, S. S. L., To, K. K. W., Yuen, K. Y., . . . Ip, P. (2021). mRNA COVID vaccine and myocarditis in adolescents. Hong Kong Med J, 27(5), 326-327. doi:10.12809/hkmj215120. https://www.ncbi.nlm.nih.gov/pubmed/34393110
  950. Lee, E., Chew, N. W. S., Ng, P., & Yeo, T. J. (2021). Reply to “Letter to the editor: Myocarditis should be considered in those with a troponin rise and unobstructed coronary arteries following PfizerBioNTech COVID-19 vaccination”. QJM. doi:10.1093/qjmed/hcab232. https://www.ncbi.nlm.nih.gov/pubmed/34463770
  951. Lee, E. J., Cines, D. B., Gernsheimer, T., Kessler, C., Michel, M., Tarantino, M. D., . . . Bussel, J. B. (2021). Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am J Hematol, 96(5), 534-537. doi:10.1002/ajh.26132. https://www.ncbi.nlm.nih.gov/pubmed/33606296
  952. Levin, D., Shimon, G., Fadlon-Derai, M., Gershovitz, L., Shovali, A., Sebbag, A., . . . Gordon, B. (2021). Myocarditis following COVID-19 vaccination – A case series. Vaccine, 39(42), 6195-6200. doi:10.1016/j.vaccine.2021.09.004. https://www.ncbi.nlm.nih.gov/pubmed/34535317
  953. Li, J., Hui, A., Zhang, X., Yang, Y., Tang, R., Ye, H., . . . Zhu, F. (2021). Safety and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in younger and older Chinese adults: a randomized, placebo-controlled, double-blind phase 1 study. Nat Med, 27(6), 1062-1070. doi:10.1038/s41591-021-01330-9. https://www.ncbi.nlm.nih.gov/pubmed/33888900
  954. Li, M., Yuan, J., Lv, G., Brown, J., Jiang, X., & Lu, Z. K. (2021). Myocarditis and Pericarditis following COVID-19 Vaccination: Inequalities in Age and Vaccine Types. J Pers Med, 11(11). doi:10.3390/jpm11111106. https://www.ncbi.nlm.nih.gov/pubmed/34834458
  955. Lim, Y., Kim, M. C., Kim, K. H., Jeong, I. S., Cho, Y. S., Choi, Y. D., & Lee, J. E. (2021). Case Report: Acute Fulminant Myocarditis and Cardiogenic Shock After Messenger RNA Coronavirus Disease 2019 Vaccination Requiring Extracorporeal Cardiopulmonary Resuscitation. Front Cardiovasc Med, 8, 758996. doi:10.3389/fcvm.2021.758996. https://www.ncbi.nlm.nih.gov/pubmed/34778411
  956. Long, S. S. (2021). Important Insights into Myopericarditis after the Pfizer mRNA COVID-19 Vaccination in Adolescents. J Pediatr, 238, 5. doi:10.1016/j.jpeds.2021.07.057. https://www.ncbi.nlm.nih.gov/pubmed/34332972
  957. Luk, A., Clarke, B., Dahdah, N., Ducharme, A., Krahn, A., McCrindle, B., . . . McDonald, M. (2021). Myocarditis and Pericarditis After COVID-19 mRNA Vaccination: Practical Considerations for Care Providers. Can J Cardiol, 37(10), 1629-1634. doi:10.1016/j.cjca.2021.08.001. https://www.ncbi.nlm.nih.gov/pubmed/34375696
  958. Madelon, N., Lauper, K., Breville, G., Sabater Royo, I., Goldstein, R., Andrey, D. O., . . . Eberhardt, C. S. (2021). Robust T cell responses in anti-CD20 treated patients following COVID-19 vaccination: a prospective cohort study. Clin Infect Dis. doi:10.1093/cid/ciab954. https://www.ncbi.nlm.nih.gov/pubmed/34791081
  959. Mangat, C., & Milosavljevic, N. (2021). BNT162b2 Vaccination during Pregnancy Protects Both the Mother and Infant: Anti-SARS-CoV-2 S Antibodies Persistently Positive in an Infant at 6 Months of Age. Case Rep Pediatr, 2021, 6901131. doi:10.1155/2021/6901131. https://www.ncbi.nlm.nih.gov/pubmed/34676123
  960. Mark, C., Gupta, S., Punnett, A., Upton, J., Orkin, J., Atkinson, A., . . . Alexander, S. (2021). Safety of administration of BNT162b2 mRNA (Pfizer-BioNTech) COVID-19 vaccine in youths and young adults with a history of acute lymphoblastic leukemia and allergy to PEG-asparaginase. Pediatr Blood Cancer, 68(11), e29295. doi:10.1002/pbc.29295. https://www.ncbi.nlm.nih.gov/pubmed/34398511
  961. Martins-Filho, P. R., Quintans-Junior, L. J., de Souza Araujo, A. A., Sposato, K. B., Souza Tavares, C. S., Gurgel, R. Q., . . . Santos, V. S. (2021). Socio-economic inequalities and COVID-19 incidence and mortality in Brazilian children: a nationwide register-based study. Public Health, 190, 4-6. doi:10.1016/j.puhe.2020.11.005. https://www.ncbi.nlm.nih.gov/pubmed/33316478
  962. McLean, K., & Johnson, T. J. (2021). Myopericarditis in a previously healthy adolescent male following COVID-19 vaccination: A case report. Acad Emerg Med, 28(8), 918-921. doi:10.1111/acem.14322. https://www.ncbi.nlm.nih.gov/pubmed/34133825
  963. Mevorach, D., Anis, E., Cedar, N., Bromberg, M., Haas, E. J., Nadir, E., . . . Alroy-Preis, S. (2021). Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. N Engl J Med, 385(23), 2140-2149. doi:10.1056/NEJMoa2109730. https://www.ncbi.nlm.nih.gov/pubmed/34614328
  964. Minocha, P. K., Better, D., Singh, R. K., & Hoque, T. (2021). Recurrence of Acute Myocarditis Temporally Associated with Receipt of the mRNA Coronavirus Disease 2019 (COVID-19) Vaccine in a Male Adolescent. J Pediatr, 238, 321-323. doi:10.1016/j.jpeds.2021.06.035. https://www.ncbi.nlm.nih.gov/pubmed/34166671
  965. Mizrahi, B., Lotan, R., Kalkstein, N., Peretz, A., Perez, G., Ben-Tov, A., . . . Patalon, T. (2021). Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. Nat Commun, 12(1), 6379. doi:10.1038/s41467-021-26672-3. https://www.ncbi.nlm.nih.gov/pubmed/34737312
  966. Moffitt, K., Cheung, E., Yeung, T., Stamoulis, C., & Malley, R. (2021). Analysis of Staphylococcus aureus Transcriptome in Pediatric Soft Tissue Abscesses and Comparison to Murine Infections. Infect Immun, 89(4). doi:10.1128/IAI.00715-20. https://www.ncbi.nlm.nih.gov/pubmed/33526560
  967. Mohamed, L., Madsen, A. M. R., Schaltz-Buchholzer, F., Ostenfeld, A., Netea, M. G., Benn, C. S., & Kofoed, P. E. (2021). Reactivation of BCG vaccination scars after vaccination with mRNA-Covid-vaccines: two case reports. BMC Infect Dis, 21(1), 1264. doi:10.1186/s12879-021-06949-0. https://www.ncbi.nlm.nih.gov/pubmed/34930152
  968. Montgomery, J., Ryan, M., Engler, R., Hoffman, D., McClenathan, B., Collins, L., . . . Cooper, L. T., Jr. (2021). Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol, 6(10), 1202-1206. doi:10.1001/jamacardio.2021.2833. https://www.ncbi.nlm.nih.gov/pubmed/34185045
  969. Murakami, Y., Shinohara, M., Oka, Y., Wada, R., Noike, R., Ohara, H., . . . Ikeda, T. (2021). Myocarditis Following a COVID-19 Messenger RNA Vaccination: A Japanese Case Series. Intern Med. doi:10.2169/internalmedicine.8731-21. https://www.ncbi.nlm.nih.gov/pubmed/34840235
  970. Nagasaka, T., Koitabashi, N., Ishibashi, Y., Aihara, K., Takama, N., Ohyama, Y., . . . Kaneko, Y. (2021). Acute Myocarditis Associated with COVID-19 Vaccination: A Case Report. J Cardiol Cases. doi:10.1016/j.jccase.2021.11.006. https://www.ncbi.nlm.nih.gov/pubmed/34876937
  971. Ntouros, P. A., Vlachogiannis, N. I., Pappa, M., Nezos, A., Mavragani, C. P., Tektonidou, M. G., . . . Sfikakis, P. P. (2021). Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus. Clin Immunol, 229, 108765. doi:10.1016/j.clim.2021.108765. https://www.ncbi.nlm.nih.gov/pubmed/34089859
  972. Nygaard, U., Holm, M., Bohnstedt, C., Chai, Q., Schmidt, L. S., Hartling, U. B., . . . Stensballe, L. G. (2022). Population-based Incidence of Myopericarditis After COVID-19 Vaccination in Danish Adolescents. Pediatr Infect Dis J, 41(1), e25-e28. doi:10.1097/INF.0000000000003389. https://www.ncbi.nlm.nih.gov/pubmed/34889875
  973. Oberhardt, V., Luxenburger, H., Kemming, J., Schulien, I., Ciminski, K., Giese, S., . . . Hofmann, M. (2021). Rapid and stable mobilization of CD8(+) T cells by SARS-CoV-2 mRNA vaccine. Nature, 597(7875), 268-273. doi:10.1038/s41586-021-03841-4. https://www.ncbi.nlm.nih.gov/pubmed/34320609
  974. Park, H., Yun, K. W., Kim, K. R., Song, S. H., Ahn, B., Kim, D. R., . . . Kim, Y. J. (2021). Epidemiology and Clinical Features of Myocarditis/Pericarditis before the Introduction of mRNA COVID-19 Vaccine in Korean Children: a Multicenter Study. J Korean Med Sci, 36(32), e232. doi:10.3346/jkms.2021.36.e232. https://www.ncbi.nlm.nih.gov/pubmed/34402230
  975. Park, J., Brekke, D. R., & Bratincsak, A. (2021). Self-limited myocarditis presenting with chest pain and ST segment elevation in adolescents after vaccination with the BNT162b2 mRNA vaccine. Cardiol Young, 1-4. doi:10.1017/S1047951121002547. https://www.ncbi.nlm.nih.gov/pubmed/34180390
  976. Patel, Y. R., Louis, D. W., Atalay, M., Agarwal, S., & Shah, N. R. (2021). Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis following mRNA COVID-19 vaccination: a case series. J Cardiovasc Magn Reson, 23(1), 101. doi:10.1186/s12968-021-00795-4. https://www.ncbi.nlm.nih.gov/pubmed/34496880
  977. Patone, M., Mei, X. W., Handunnetthi, L., Dixon, S., Zaccardi, F., Shankar-Hari, M., . . . Hippisley-Cox, J. (2021). Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med. doi:10.1038/s41591-021-01630-0. https://www.ncbi.nlm.nih.gov/pubmed/34907393
  978. Patrignani, A., Schicchi, N., Calcagnoli, F., Falchetti, E., Ciampani, N., Argalia, G., & Mariani, A. (2021). Acute myocarditis following Comirnaty vaccination in a healthy man with previous SARS-CoV-2 infection. Radiol Case Rep, 16(11), 3321-3325. doi:10.1016/j.radcr.2021.07.082. https://www.ncbi.nlm.nih.gov/pubmed/34367386
  979. Perez, Y., Levy, E. R., Joshi, A. Y., Virk, A., Rodriguez-Porcel, M., Johnson, M., . . . Swift, M. D. (2021). Myocarditis Following COVID-19 mRNA Vaccine: A Case Series and Incidence Rate Determination. Clin Infect Dis. doi:10.1093/cid/ciab926. https://www.ncbi.nlm.nih.gov/pubmed/34734240
  980. Perrotta, A., Biondi-Zoccai, G., Saade, W., Miraldi, F., Morelli, A., Marullo, A. G., . . . Peruzzi, M. (2021). A snapshot global survey on side effects of COVID-19 vaccines among healthcare professionals and armed forces with a focus on headache. Panminerva Med, 63(3), 324-331. doi:10.23736/S0031-0808.21.04435-9. https://www.ncbi.nlm.nih.gov/pubmed/34738774
  981. Pinana, J. L., Lopez-Corral, L., Martino, R., Montoro, J., Vazquez, L., Perez, A., . . . Cell Therapy, G. (2022). SARS-CoV-2-reactive antibody detection after SARS-CoV-2 vaccination in hematopoietic stem cell transplant recipients: Prospective survey from the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group. Am J Hematol, 97(1), 30-42. doi:10.1002/ajh.26385. https://www.ncbi.nlm.nih.gov/pubmed/34695229
  982. Revon-Riviere, G., Ninove, L., Min, V., Rome, A., Coze, C., Verschuur, A., . . . Andre, N. (2021). The BNT162b2 mRNA COVID-19 vaccine in adolescents and young adults with cancer: A monocentric experience. Eur J Cancer, 154, 30-34. doi:10.1016/j.ejca.2021.06.002. https://www.ncbi.nlm.nih.gov/pubmed/34233234
  983. Sanchez Tijmes, F., Thavendiranathan, P., Udell, J. A., Seidman, M. A., & Hanneman, K. (2021). Cardiac MRI Assessment of Nonischemic Myocardial Inflammation: State of the Art Review and Update on Myocarditis Associated with COVID-19 Vaccination. Radiol Cardiothorac Imaging, 3(6), e210252. doi:10.1148/ryct.210252. https://www.ncbi.nlm.nih.gov/pubmed/34934954
  984. Schauer, J., Buddhe, S., Colyer, J., Sagiv, E., Law, Y., Mallenahalli Chikkabyrappa, S., & Portman, M. A. (2021). Myopericarditis After the Pfizer Messenger Ribonucleic Acid Coronavirus Disease Vaccine in Adolescents. J Pediatr, 238, 317-320. doi:10.1016/j.jpeds.2021.06.083. https://www.ncbi.nlm.nih.gov/pubmed/34228985
  985. Schneider, J., Sottmann, L., Greinacher, A., Hagen, M., Kasper, H. U., Kuhnen, C., . . . Schmeling, A. (2021). Postmortem investigation of fatalities following vaccination with COVID-19 vaccines. Int J Legal Med, 135(6), 2335-2345. doi:10.1007/s00414-021-02706-9. https://www.ncbi.nlm.nih.gov/pubmed/34591186
  986. Schramm, R., Costard-Jackle, A., Rivinius, R., Fischer, B., Muller, B., Boeken, U., . . . Gummert, J. (2021). Poor humoral and T-cell response to two-dose SARS-CoV-2 messenger RNA vaccine BNT162b2 in cardiothoracic transplant recipients. Clin Res Cardiol, 110(8), 1142-1149. doi:10.1007/s00392-021-01880-5. https://www.ncbi.nlm.nih.gov/pubmed/34241676
  987. Sessa, F., Salerno, M., Esposito, M., Di Nunno, N., Zamboni, P., & Pomara, C. (2021). Autopsy Findings and Causality Relationship between Death and COVID-19 Vaccination: A Systematic Review. J Clin Med, 10(24). doi:10.3390/jcm10245876. https://www.ncbi.nlm.nih.gov/pubmed/34945172
  988. Sharif, N., Alzahrani, K. J., Ahmed, S. N., & Dey, S. K. (2021). Efficacy, Immunogenicity and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Front Immunol, 12, 714170. doi:10.3389/fimmu.2021.714170. https://www.ncbi.nlm.nih.gov/pubmed/34707602
  989. Shay, D. K., Gee, J., Su, J. R., Myers, T. R., Marquez, P., Liu, R., . . . Shimabukuro, T. T. (2021). Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine – United States, March-April 2021. MMWR Morb Mortal Wkly Rep, 70(18), 680-684. doi:10.15585/mmwr.mm7018e2. https://www.ncbi.nlm.nih.gov/pubmed/33956784
  990. Shazley, O., & Alshazley, M. (2021). A COVID-Positive 52-Year-Old Man Presented With Venous Thromboembolism and Disseminated Intravascular Coagulation Following Johnson & Johnson Vaccination: A Case-Study. Cureus, 13(7), e16383. doi:10.7759/cureus.16383. https://www.ncbi.nlm.nih.gov/pubmed/34408937
  991. Shiyovich, A., Witberg, G., Aviv, Y., Eisen, A., Orvin, K., Wiessman, M., . . . Hamdan, A. (2021). Myocarditis following COVID-19 vaccination: magnetic resonance imaging study. Eur Heart J Cardiovasc Imaging. doi:10.1093/ehjci/jeab230. https://www.ncbi.nlm.nih.gov/pubmed/34739045
  992. Simone, A., Herald, J., Chen, A., Gulati, N., Shen, A. Y., Lewin, B., & Lee, M. S. (2021). Acute Myocarditis Following COVID-19 mRNA Vaccination in Adults Aged 18 Years or Older. JAMA Intern Med, 181(12), 1668-1670. doi:10.1001/jamainternmed.2021.5511. https://www.ncbi.nlm.nih.gov/pubmed/34605853
  993. Singer, M. E., Taub, I. B., & Kaelber, D. C. (2021). Risk of Myocarditis from COVID-19 Infection in People Under Age 20: A Population-Based Analysis. medRxiv. doi:10.1101/2021.07.23.21260998. https://www.ncbi.nlm.nih.gov/pubmed/34341797
  994. Smith, C., Odd, D., Harwood, R., Ward, J., Linney, M., Clark, M., . . . Fraser, L. K. (2021). Deaths in children and young people in England after SARS-CoV-2 infection during the first pandemic year. Nat Med. doi:10.1038/s41591-021-01578-1. https://www.ncbi.nlm.nih.gov/pubmed/34764489
  995. Snapiri, O., Rosenberg Danziger, C., Shirman, N., Weissbach, A., Lowenthal, A., Ayalon, I., . . . Bilavsky, E. (2021). Transient Cardiac Injury in Adolescents Receiving the BNT162b2 mRNA COVID-19 Vaccine. Pediatr Infect Dis J, 40(10), e360-e363. doi:10.1097/INF.0000000000003235. https://www.ncbi.nlm.nih.gov/pubmed/34077949
  996. Spinner, J. A., Julien, C. L., Olayinka, L., Dreyer, W. J., Bocchini, C. E., Munoz, F. M., & Devaraj, S. (2021). SARS-CoV-2 anti-spike antibodies after vaccination in pediatric heart transplantation: A first report. J Heart Lung Transplant. doi:10.1016/j.healun.2021.11.001. https://www.ncbi.nlm.nih.gov/pubmed/34911654
  997. Starekova, J., Bluemke, D. A., Bradham, W. S., Grist, T. M., Schiebler, M. L., & Reeder, S. B. (2021). Myocarditis Associated with mRNA COVID-19 Vaccination. Radiology, 301(2), E409-E411. doi:10.1148/radiol.2021211430. https://www.ncbi.nlm.nih.gov/pubmed/34282971
  998. Sulemankhil, I., Abdelrahman, M., & Negi, S. I. (2021). Temporal association between the COVID-19 Ad26.COV2.S vaccine and acute myocarditis: A case report and literature review. Cardiovasc Revasc Med. doi:10.1016/j.carrev.2021.08.012. https://www.ncbi.nlm.nih.gov/pubmed/34420869
  999. Tailor, P. D., Feighery, A. M., El-Sabawi, B., & Prasad, A. (2021). Case report: acute myocarditis following the second dose of mRNA-1273 SARS-CoV-2 vaccine. Eur Heart J Case Rep, 5(8), ytab319. doi:10.1093/ehjcr/ytab319. https://www.ncbi.nlm.nih.gov/pubmed/34514306
  1000. Takeda, M., Ishio, N., Shoji, T., Mori, N., Matsumoto, M., & Shikama, N. (2021). Eosinophilic Myocarditis Following Coronavirus Disease 2019 (COVID-19) Vaccination. Circ J. doi:10.1253/circj.CJ-21-0935. https://www.ncbi.nlm.nih.gov/pubmed/34955479
  1001. Team, C. C.-R., Food, & Drug, A. (2021). Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine – United States, December 14-23, 2020. MMWR Morb Mortal Wkly Rep, 70(2), 46-51. doi:10.15585/mmwr.mm7002e1. https://www.ncbi.nlm.nih.gov/pubmed/33444297
  1002. Thompson, M. G., Burgess, J. L., Naleway, A. L., Tyner, H., Yoon, S. K., Meece, J., . . . Gaglani, M. (2021). Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines. N Engl J Med, 385(4), 320-329. doi:10.1056/NEJMoa2107058. https://www.ncbi.nlm.nih.gov/pubmed/34192428
  1003. Tinoco, M., Leite, S., Faria, B., Cardoso, S., Von Hafe, P., Dias, G., . . . Lourenco, A. (2021). Perimyocarditis Following COVID-19 Vaccination. Clin Med Insights Cardiol, 15, 11795468211056634. doi:10.1177/11795468211056634. https://www.ncbi.nlm.nih.gov/pubmed/34866957
  1004. Truong, D. T., Dionne, A., Muniz, J. C., McHugh, K. E., Portman, M. A., Lambert, L. M., . . . Newburger, J. W. (2021). Clinically Suspected Myocarditis Temporally Related to COVID-19 Vaccination in Adolescents and Young Adults. Circulation. doi:10.1161/CIRCULATIONAHA.121.056583. https://www.ncbi.nlm.nih.gov/pubmed/34865500
  1005. Tutor, A., Unis, G., Ruiz, B., Bolaji, O. A., & Bob-Manuel, T. (2021). Spectrum of Suspected Cardiomyopathy Due to COVID-19: A Case Series. Curr Probl Cardiol, 46(10), 100926. doi:10.1016/j.cpcardiol.2021.100926. https://www.ncbi.nlm.nih.gov/pubmed/34311983
  1006. Umei, T. C., Kishino, Y., Shiraishi, Y., Inohara, T., Yuasa, S., & Fukuda, K. (2021). Recurrence of myopericarditis following mRNA COVID-19 vaccination in a male adolescent. CJC Open. doi:10.1016/j.cjco.2021.12.002. https://www.ncbi.nlm.nih.gov/pubmed/34904134
  1007. Vidula, M. K., Ambrose, M., Glassberg, H., Chokshi, N., Chen, T., Ferrari, V. A., & Han, Y. (2021). Myocarditis and Other Cardiovascular Complications of the mRNA-Based COVID-19 Vaccines. Cureus, 13(6), e15576. doi:10.7759/cureus.15576. https://www.ncbi.nlm.nih.gov/pubmed/34277198
  1008. Visclosky, T., Theyyunni, N., Klekowski, N., & Bradin, S. (2021). Myocarditis Following mRNA COVID-19 Vaccine. Pediatr Emerg Care, 37(11), 583-584. doi:10.1097/PEC.0000000000002557. https://www.ncbi.nlm.nih.gov/pubmed/34731877
  1009. Warren, C. M., Snow, T. T., Lee, A. S., Shah, M. M., Heider, A., Blomkalns, A., . . . Nadeau, K. C. (2021). Assessment of Allergic and Anaphylactic Reactions to mRNA COVID-19 Vaccines With Confirmatory Testing in a US Regional Health System. JAMA Netw Open, 4(9), e2125524. doi:10.1001/jamanetworkopen.2021.25524. https://www.ncbi.nlm.nih.gov/pubmed/34533570
  1010. Watkins, K., Griffin, G., Septaric, K., & Simon, E. L. (2021). Myocarditis after BNT162b2 vaccination in a healthy male. Am J Emerg Med, 50, 815 e811-815 e812. doi:10.1016/j.ajem.2021.06.051. https://www.ncbi.nlm.nih.gov/pubmed/34229940
  1011. Weitzman, E. R., Sherman, A. C., & Levy, O. (2021). SARS-CoV-2 mRNA Vaccine Attitudes as Expressed in U.S. FDA Public Commentary: Need for a Public-Private Partnership in a Learning Immunization System. Front Public Health, 9, 695807. doi:10.3389/fpubh.2021.695807. https://www.ncbi.nlm.nih.gov/pubmed/34336774
  1012. Welsh, K. J., Baumblatt, J., Chege, W., Goud, R., & Nair, N. (2021). Thrombocytopenia including immune thrombocytopenia after receipt of mRNA COVID-19 vaccines reported to the Vaccine Adverse Event Reporting System (VAERS). Vaccine, 39(25), 3329-3332. doi:10.1016/j.vaccine.2021.04.054. https://www.ncbi.nlm.nih.gov/pubmed/34006408
  1013. Witberg, G., Barda, N., Hoss, S., Richter, I., Wiessman, M., Aviv, Y., . . . Kornowski, R. (2021). Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. N Engl J Med, 385(23), 2132-2139. doi:10.1056/NEJMoa2110737. https://www.ncbi.nlm.nih.gov/pubmed/34614329
  1014. Zimmermann, P., & Curtis, N. (2020). Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child. doi:10.1136/archdischild-2020-320338. https://www.ncbi.nlm.nih.gov/pubmed/33262177ries: https://www.sciencedirect.com/science/article/pii/S2666602221000409
  1015. Three cases of acute venous thromboembolism in women after vaccination against COVID-19: https://www.sciencedirect.com/science/article/pii/S2213333X21003929
  1016. Acute thrombosis of the coronary tree after vaccination against COVID-19: https://www.sciencedirect.com/science/article/abs/pii/S1936879821003988
  1017. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after vaccination with Ad26.COV2.S (against covid-19), March 2 to April 21, 2020: https://pubmed.ncbi.nlm.nih.gov/33929487/
  1018. Portal vein thrombosis associated with ChAdOx1 nCov-19 vaccine: https://www.thelancet.com/journals/langas/article/PIIS2468-1253(21)00197-7/
  1019. Management of cerebral and splanchnic vein thrombosis associated with thrombocytopenia in subjects previously vaccinated with Vaxzevria (AstraZeneca): position statement of the Italian Society for the Study of Hemostasis and Thrombosis (SISET): https://pubmed.ncbi.nlm.nih.gov/33871350/
  1020. Vaccine-induced immune immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis after vaccination with COVID-19; a systematic review: https://www.sciencedirect.com/science/article/pii/S0022510X21003014
  1021. Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines: https://www.sciencedirect.com/science/article/abs/pii/S0735675721004381
  1022. Covid-19 vaccine-induced thrombosis and thrombocytopenia: a commentary on an important and practical clinical dilemma: https://www.sciencedirect.com/science/article/abs/pii/S0033062021000505
  1023. Thrombosis with thrombocytopenia syndrome associated with COVID-19 viral vector vaccines: https://www.sciencedirect.com/science/article/abs/pii/S0953620521001904
  1024. COVID-19 vaccine-induced immune-immune thrombotic thrombocytopenia: an emerging cause of splanchnic vein thrombosis: https://www.sciencedirect.com/science/article/pii/S1665268121000557
  1025. The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune thrombotic immune thrombocytopenia (covid): https://www.sciencedirect.com/science/article/pii/S1050173821000967
  1026. Roots of autoimmunity of thrombotic events after COVID-19 vaccination: https://www.sciencedirect.com/science/article/abs/pii/S1568997221002160
  1027. Cerebral venous sinus thrombosis after vaccination: the United Kingdom experience: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01788-8/fulltext
  1028. Thrombotic immune thrombocytopenia induced by SARS-CoV-2 vaccine: https://www.nejm.org/doi/full/10.1056/nejme2106315
  1029. Myocarditis after immunization with COVID-19 mRNA vaccines in members of the US military. This article reports that in “23 male patients, including 22 previously healthy military members, myocarditis was identified within 4 days after receipt of the vaccine”: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601
  1030. Thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://www.nejm.org/doi/full/10.1056/NEJMoa2104882?query=recirc_curatedRelated_article
  1031. Association of myocarditis with the BNT162b2 messenger RNA COVID-19 vaccine in a case series of children: https://pubmed.ncbi.nlm.nih.gov/34374740/
  1032. Thrombotic thrombocytopenia after vaccination with ChAdOx1 nCov-19: https://www.nejm.org/doi/full/10.1056/NEJMoa2104840?query=recirc_curatedRelated_article
  1033. Post-mortem findings in vaccine-induced thrombotic thrombocytopenia (covid-19): https://haematologica.org/article/view/haematol.2021.279075
  1034. Thrombocytopenia, including immune thrombocytopenia after receiving COVID-19 mRNA vaccines reported to the Vaccine Adverse Event Reporting System (VAERS): https://www.sciencedirect.com/science/article/pii/S0264410X21005247
  1035. Acute symptomatic myocarditis in seven adolescents after Pfizer-BioNTech COVID-19 vaccination: https://pediatrics.aappublications.org/content/early/2021/06/04/peds.2021-052478
  1036. Aphasia seven days after the second dose of an mRNA-based SARS-CoV-2 vaccine. Brain MRI revealed an intracerebral hemorrhage (ICBH) in the left temporal lobe in a 52-year-old man. https://www.sciencedirect.com/science/article/pii/S2589238X21000292#f0005
  1037. Comparison of vaccine-induced thrombotic episodes between ChAdOx1 nCoV-19 and Ad26.COV.2.S vaccines: https://www.sciencedirect.com/science/article/abs/pii/S0896841121000895
  1038. Hypothesis behind the very rare cases of thrombosis with thrombocytopenia syndrome after SARS-CoV-2 vaccination: https://www.sciencedirect.com/science/article/abs/pii/S0049384821003315
  1039. Blood clots and bleeding episodes after BNT162b2 and ChAdOx1 nCoV-19 vaccination: analysis of European data: https://www.sciencedirect.com/science/article/pii/S0896841121000937
  1040. Cerebral venous thrombosis after BNT162b2 mRNA SARS-CoV-2 vaccine: https://www.sciencedirect.com/science/article/abs/pii/S1052305721003098
  1041. Primary adrenal insufficiency associated with thrombotic immune thrombocytopenia induced by the Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine (VITT): https://www.sciencedirect.com/science/article/pii/S0953620521002363
  1042. Myocarditis and pericarditis after vaccination with COVID-19 mRNA: practical considerations for care providers: https://www.sciencedirect.com/science/article/pii/S0828282X21006243
  1043. “Portal vein thrombosis occurring after the first dose of SARS-CoV-2 mRNA vaccine in a patient with antiphospholipid syndrome”: https://www.sciencedirect.com/science/article/pii/S2666572721000389
  1044. Early results of bivalirudin treatment for thrombotic thrombocytopenia and cerebral venous sinus thrombosis after vaccination with Ad26.COV2.S: https://www.sciencedirect.com/science/article/pii/S0196064421003425
  1045. Myocarditis, pericarditis and cardiomyopathy after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S1443950621011562
  1046. Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection: https://www.sciencedirect.com/science/article/abs/pii/S0896841121000706
  1047. Prothrombotic immune thrombocytopenia after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0006497121009411
  1048. Vaccine-induced thrombotic thrombocytopenia: the dark chapter of a success story: https://www.sciencedirect.com/science/article/pii/S2589936821000256
  1049. Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in a non-comorbid elderly Indian male treated with conventional heparin-warfarin based anticoagulation: https://www.sciencedirect.com/science/article/pii/S1871402121002046
  1050. Thrombosis after COVID-19 vaccination: possible link to ACE pathways: https://www.sciencedirect.com/science/article/pii/S0049384821004369
  1051. Cerebral venous sinus thrombosis in the U.S. population after SARS-CoV-2 vaccination with adenovirus and after COVID-19: https://www.sciencedirect.com/science/article/pii/S0735109721051949
  1052. A rare case of a middle-aged Asian male with cerebral venous thrombosis after AstraZeneca COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0735675721005714
  1053. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination: report of two cases in the United Kingdom: https://www.sciencedirect.com/science/article/abs/pii/S088915912100163X
  1054. Immune thrombocytopenic purpura after vaccination with COVID-19 vaccine (ChAdOx1 nCov-19): https://www.sciencedirect.com/science/article/abs/pii/S0006497121013963.
  1055. Antiphospholipid antibodies and risk of thrombophilia after COVID-19 vaccination: the straw that breaks the camel’s back?: https://docs.google.com/document/d/1XzajasO8VMMnC3CdxSBKks1o7kiOLXFQ
  1056. Vaccine-induced thrombotic thrombocytopenia, a rare but severe case of friendly fire in the battle against the COVID-19 pandemic: What pathogenesis?: https://www.sciencedirect.com/science/article/pii/S0953620521002314
  1057. Diagnostic-therapeutic recommendations of the ad-hoc FACME expert working group on the management of cerebral venous thrombosis related to COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0213485321000839
  1058. Thrombocytopenia and intracranial venous sinus thrombosis after exposure to the “AstraZeneca COVID-19 vaccine”: https://pubmed.ncbi.nlm.nih.gov/33918932/
  1059. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33606296/
  1060. Severe and refractory immune thrombocytopenia occurring after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33854395/
  1061. Purpuric rash and thrombocytopenia after mRNA-1273 (Modern) COVID-19 vaccine: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996471/
  1062. COVID-19 vaccination: information on the occurrence of arterial and venous thrombosis using data from VigiBase: https://pubmed.ncbi.nlm.nih.gov/33863748/
  1063. Cerebral venous thrombosis associated with the covid-19 vaccine in Germany: https://onlinelibrary.wiley.com/doi/10.1002/ana.26172
  1064. Cerebral venous thrombosis following BNT162b2 mRNA vaccination of BNT162b2 against SARS-CoV-2: a black swan event: https://pubmed.ncbi.nlm.nih.gov/34133027/
  1065. The importance of recognizing cerebral venous thrombosis following anti-COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34001390/
  1066. Thrombosis with thrombocytopenia after messenger RNA vaccine -1273: https://pubmed.ncbi.nlm.nih.gov/34181446/
  1067. Blood clots and bleeding after BNT162b2 and ChAdOx1 nCoV-19 vaccination: an analysis of European data: https://pubmed.ncbi.nlm.nih.gov/34174723/
  1068. First dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic, and hemorrhagic events in Scotland: https://www.nature.com/articles/s41591-021-01408-4
  1069. Exacerbation of immune thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34075578/
  1070. First report of a de novo iTTP episode associated with a COVID-19 mRNA-based anti-COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34105244/
  1071. PF4 immunoassays in vaccine-induced thrombotic thrombocytopenia: https://www.nejm.org/doi/full/10.1056/NEJMc2106383
  1072. Antibody epitopes in vaccine-induced immune immune thrombotic thrombocytopenia: https://www.nature.com/articles/s41586-021-03744-4
  1073. Myocarditis with COVID-19 mRNA vaccines: https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.121.056135
  1074. Myocarditis and pericarditis after COVID-19 vaccination: https://jamanetwork.com/journals/jama/fullarticle/2782900
  1075. Myocarditis temporally associated with COVID-19 vaccination: https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.121.055891.
  1076. COVID-19 Vaccination Associated with Myocarditis in Adolescents: https://pediatrics.aappublications.org/content/pediatrics/early/2021/08/12/peds.2021-053427.full.pdf
  1077. Acute myocarditis after administration of BNT162b2 vaccine against COVID-19: https://pubmed.ncbi.nlm.nih.gov/33994339/
  1078. Temporal association between COVID-19 vaccine Ad26.COV2.S and acute myocarditis: case report and review of the literature: https://www.sciencedirect.com/science/article/pii/S1553838921005789
  1079. COVID-19 vaccine-induced myocarditis: a case report with review of the literature: https://www.sciencedirect.com/science/article/pii/S1871402121002253
  1080. Potential association between COVID-19 vaccine and myocarditis: clinical and CMR findings: https://www.sciencedirect.com/science/article/pii/S1936878X2100485X
  1081. Recurrence of acute myocarditis temporally associated with receipt of coronavirus mRNA disease vaccine 2019 (COVID-19) in a male adolescent: https://www.sciencedirect.com/science/article/pii/S002234762100617X
  1082. Fulminant myocarditis and systemic hyper inflammation temporally associated with BNT162b2 COVID-19 mRNA vaccination in two patients: https://www.sciencedirect.com/science/article/pii/S0167527321012286.
  1083. Acute myocarditis after administration of BNT162b2 vaccine: https://www.sciencedirect.com/science/article/pii/S2214250921001530
  1084. Lymphohistocytic myocarditis after vaccination with COVID-19 Ad26.COV2.S viral vector: https://www.sciencedirect.com/science/article/pii/S2352906721001573
  1085. Myocarditis following vaccination with BNT162b2 in a healthy male: https://www.sciencedirect.com/science/article/pii/S0735675721005362
  1086. Acute myocarditis after Comirnaty (Pfizer) vaccination in a healthy male with previous SARS-CoV-2 infection: https://www.sciencedirect.com/science/article/pii/S1930043321005549
  1087. Myopericarditis after Pfizer mRNA COVID-19 vaccination in adolescents: https://www.sciencedirect.com/science/article/pii/S002234762100665X
  1088. Pericarditis after administration of BNT162b2 mRNA COVID-19 mRNA vaccine: https://www.sciencedirect.com/science/article/pii/S1885585721002218
  1089. Acute myocarditis after vaccination with SARS-CoV-2 mRNA-1273 mRNA: https://www.sciencedirect.com/science/article/pii/S2589790X21001931
  1090. Temporal relationship between the second dose of BNT162b2 mRNA Covid-19 vaccine and cardiac involvement in a patient with previous SARS-COV-2 infection: https://www.sciencedirect.com/science/article/pii/S2352906721000622
  1091. Myopericarditis after vaccination with COVID-19 mRNA in adolescents 12 to 18 years of age: https://www.sciencedirect.com/science/article/pii/S0022347621007368
  1092. Acute myocarditis after SARS-CoV-2 vaccination in a 24-year-old man: https://www.sciencedirect.com/science/article/pii/S0870255121003243
  1093. Important information on myopericarditis after vaccination with Pfizer COVID-19 mRNA in adolescents: https://www.sciencedirect.com/science/article/pii/S0022347621007496
  1094. A series of patients with myocarditis after vaccination against SARS-CoV-2 with mRNA-1279 and BNT162b2: https://www.sciencedirect.com/science/article/pii/S1936878X21004861
  1095. Takotsubo cardiomyopathy after vaccination with mRNA COVID-19: https://www.sciencedirect.com/science/article/pii/S1443950621011331
  1096. COVID-19 mRNA vaccination and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34268277/
  1097. COVID-19 vaccine and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34399967/
  1098. Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resourc e/en/covidwho-1360706.
  1099. COVID-19 vaccines and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34246566/
  1100. Myocarditis and other cardiovascular complications of COVID-19 mRNA-based COVID-19 vaccines https://www.cureus.com/articles/61030-myocarditis-and-other-cardiovascular-comp lications-of-the-mrna-based-covid-19-vaccines https://www.cureus.com/articles/61030-myocarditis-and-other-cardiovascular-complications-of-the-mrna-based-covid-19-vaccines
  1101. Myocarditis, pericarditis, and cardiomyopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34340927/
  1102. Myocarditis with covid-19 mRNA vaccines: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056135
  1103. Association of myocarditis with COVID-19 mRNA vaccine in children: https://media.jamanetwork.com/news-item/association-of-myocarditis-with-mrna-co vid-19-vaccine-in-children/
  1104. Association of myocarditis with COVID-19 messenger RNA vaccine BNT162b2 in a case series of children: https://jamanetwork.com/journals/jamacardiology/fullarticle/2783052
  1105. Myocarditis after immunization with COVID-19 mRNA vaccines in members of the U.S. military: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601%5C
  1106. Myocarditis occurring after immunization with COVID-19 mRNA-based COVID-19 vaccines: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781600
  1107. Myocarditis following immunization with Covid-19 mRNA: https://www.nejm.org/doi/full/10.1056/NEJMc2109975
  1108. Patients with acute myocarditis after vaccination withCOVID-19 mRNA: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781602
  1109. Myocarditis associated with vaccination with COVID-19 mRNA: https://pubs.rsna.org/doi/10.1148/radiol.2021211430
  1110. Symptomatic Acute Myocarditis in 7 Adolescents after Pfizer-BioNTech COVID-19 Vaccination: https://pediatrics.aappublications.org/content/148/3/e2021052478
  1111. Cardiovascular magnetic resonance imaging findings in young adult patients with acute myocarditis after COVID-19 mRNA vaccination: a case series: https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-021-00795-4
  1112. Clinical Guidance for Young People with Myocarditis and Pericarditis after Vaccination with COVID-19 mRNA: https://www.cps.ca/en/documents/position/clinical-guidance-for-youth-with-myocarditis-and-pericarditis
  1113. Cardiac imaging of acute myocarditis after vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34402228/
  1114. Case report: acute myocarditis after second dose of mRNA-1273 SARS-CoV-2 mRNA vaccine: https://academic.oup.com/ehjcr/article/5/8/ytab319/6339567
  1115. Myocarditis / pericarditis associated with COVID-19 vaccine: https://science.gc.ca/eic/site/063.nsf/eng/h_98291.html
  1116. Transient cardiac injury in adolescents receiving the BNT162b2 mRNA COVID-19 vaccine: https://journals.lww.com/pidj/Abstract/9000/Transient_Cardiac_Injury_in_Adolesce nts_Receiving.95800.aspx
  1117. Perimyocarditis in adolescents after Pfizer-BioNTech COVID-19 vaccine: https://academic.oup.com/jpids/advance-article/doi/10.1093/jpids/piab060/6329543
  1118. The new COVID-19 mRNA vaccine platform and myocarditis: clues to the possible underlying mechanism: https://pubmed.ncbi.nlm.nih.gov/34312010/
  1119. Acute myocardial injury after COVID-19 vaccination: a case report and review of current evidence from the Vaccine Adverse Event Reporting System database: https://pubmed.ncbi.nlm.nih.gov/34219532/
  1120. Be alert to the risk of adverse cardiovascular events after COVID-19 vaccination: https://www.xiahepublishing.com/m/2472-0712/ERHM-2021-00033
  1121. Myocarditis associated with COVID-19 vaccination: echocardiographic, cardiac tomography, and magnetic resonance imaging findings: https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.121.013236
  1122. In-depth evaluation of a case of presumed myocarditis after the second dose of COVID-19 mRNA vaccine: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056038
  1123. Occurrence of acute infarct-like myocarditis after COVID-19 vaccination: just an accidental coincidence or rather a vaccination-associated autoimmune myocarditis?: https://pubmed.ncbi.nlm.nih.gov/34333695/
  1124. Recurrence of acute myocarditis temporally associated with receipt of coronavirus mRNA disease vaccine 2019 (COVID-19) in a male adolescent: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216855/
  1125. Myocarditis after SARS-CoV-2 vaccination: a vaccine-induced reaction?: https://pubmed.ncbi.nlm.nih.gov/34118375/
  1126. Self-limited myocarditis presenting with chest pain and ST-segment elevation in adolescents after vaccination with the BNT162b2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34180390/
  1127. Myopericarditis in a previously healthy adolescent male after COVID-19 vaccination: Case report: https://pubmed.ncbi.nlm.nih.gov/34133825/
  1128. Biopsy-proven lymphocytic myocarditis after first COVID-19 mRNA vaccination in a 40-year-old man: case report: https://pubmed.ncbi.nlm.nih.gov/34487236/
  1129. Insights from a murine model of COVID-19 mRNA vaccine-induced myopericarditis: could accidental intravenous injection of a vaccine induce myopericarditis https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab741/6359059
  1130. Unusual presentation of acute perimyocarditis after modern SARS-COV-2 mRNA-1237 vaccination: https://pubmed.ncbi.nlm.nih.gov/34447639/
  1131. Perimyocarditis after the first dose of mRNA-1273 SARS-CoV-2 (Modern) mRNA-1273 vaccine in a young healthy male: case report: https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-021-02183
  1132. Acute myocarditis after the second dose of SARS-CoV-2 vaccine: serendipity or causal relationship: https://pubmed.ncbi.nlm.nih.gov/34236331/
  1133. Rhabdomyolysis and fasciitis induced by the COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34435250/
  1134. COVID-19 vaccine-induced rhabdomyolysis: case report with literature review: https://pubmed.ncbi.nlm.nih.gov/34186348/.
  1135. GM1 ganglioside antibody and COVID-19-related Guillain Barre syndrome: case report, systemic review, and implications for vaccine development: https://www.sciencedirect.com/science/article/pii/S2666354621000065
  1136. Guillain-Barré syndrome after AstraZeneca COVID-19 vaccination: causal or casual association: https://www.sciencedirect.com/science/article/pii/S0303846721004169
  1137. Sensory Guillain-Barré syndrome after ChAdOx1 nCov-19 vaccine: report of two cases and review of the literature: https://www.sciencedirect.com/science/article/pii/S0165572821002186
  1138. Guillain-Barré syndrome after the first dose of SARS-CoV-2 vaccine: a temporary occurrence, not a causal association: https://www.sciencedirect.com/science/article/pii/S2214250921000998.
  1139. Guillain-Barré syndrome presenting as facial diplegia after vaccination with COVID-19: a case report: https://www.sciencedirect.com/science/article/pii/S0736467921006442
  1140. Guillain-Barré syndrome after the first injection of ChAdOx1 nCoV-19 vaccine: first report: https://www.sciencedirect.com/science/article/pii/S0035378721005853.
  1141. SARS-CoV-2 vaccines are not safe for those with Guillain-Barre syndrome following vaccination: https://www.sciencedirect.com/science/article/pii/S2049080121005343
  1142. Acute hyperactive encephalopathy following COVID-19 vaccination with dramatic response to methylprednisolone: a case report: https://www.sciencedirect.com/science/article/pii/S2049080121007536
  1143. Facial nerve palsy following administration of COVID-19 mRNA vaccines: analysis of self-report database: https://www.sciencedirect.com/science/article/pii/S1201971221007049
  1144. Neurological symptoms and neuroimaging alterations related to COVID-19 vaccine: cause or coincidence: https://www.sciencedirect.com/science/article/pii/S0899707121003557.
  1145. New-onset refractory status epilepticus after ChAdOx1 nCoV-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0165572821001569
  1146. Acute myelitis and ChAdOx1 nCoV-19 vaccine: coincidental or causal association: https://www.sciencedirect.com/science/article/pii/S0165572821002137
  1147. Bell’s palsy and SARS-CoV-2 vaccines: an unfolding story: https://www.sciencedirect.com/science/article/pii/S1473309921002735
  1148. Bell’s palsy after the second dose of the Pfizer COVID-19 vaccine in a patient with a history of recurrent Bell’s palsy: https://www.sciencedirect.com/science/article/pii/S266635462100020X
  1149. Acute-onset central serous retinopathy after immunization with COVID-19 mRNA vaccine:. https://www.sciencedirect.com/science/article/pii/S2451993621001456.
  1150. Bell’s palsy after COVID-19 vaccination: case report: https://www.sciencedirect.com/science/article/pii/S217358082100122X.
  1151. An academic hospital experience assessing the risk of COVID-19 mRNA vaccine using patient’s allergy history: https://www.sciencedirect.com/science/article/pii/S2213219821007972
  1152. COVID-19 vaccine-induced axillary and pectoral lymphadenopathy in PET: https://www.sciencedirect.com/science/article/pii/S1930043321002612
  1153. ANCA-associated vasculitis after Pfizer-BioNTech COVID-19 vaccine: https://www.sciencedirect.com/science/article/pii/S0272638621007423
  1154. Late cutaneous reactions after administration of COVID-19 mRNA vaccines: https://www.sciencedirect.com/science/article/pii/S2213219821007996
  1155. COVID-19 vaccine-induced rhabdomyolysis: case report with review of the literature: https://www.sciencedirect.com/science/article/pii/S1871402121001880
  1156. Clinical and pathologic correlates of skin reactions to COVID-19 vaccine, including V-REPP: a registry-based study: https://www.sciencedirect.com/science/article/pii/S0190962221024427
  1157. Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines:. https://www.sciencedirect.com/science/article/abs/pii/S0735675721004381.
  1158. COVID-19 vaccine-associated anaphylaxis: a statement from the Anaphylaxis Committee of the World Allergy Organization:. https://www.sciencedirect.com/science/article/pii/S1939455121000119.
  1159. Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in an elderly, non-comorbid Indian male treated with conventional heparin-warfarin-based anticoagulation:. https://www.sciencedirect.com/science/article/pii/S1871402121002046.
  1160. Acute myocarditis after administration of BNT162b2 vaccine against COVID-19:. https://www.sciencedirect.com/science/article/abs/pii/S188558572100133X
  1161. Blood clots and bleeding after BNT162b2 and ChAdOx1 nCoV-19 vaccine: an analysis of European data:. https://www.sciencedirect.com/science/article/pii/S0896841121000937.
  1162. immune thrombocytopenia associated with Pfizer-BioNTech’s COVID-19 BNT162b2 mRNA vaccine:. https://www.sciencedirect.com/science/article/pii/S2214250921002018.
  1163. Bullous drug eruption after the second dose of COVID-19 mRNA-1273 (Moderna) vaccine: Case report: https://www.sciencedirect.com/science/article/pii/S1876034121001878.
  1164. COVID-19 RNA-based vaccines and the risk of prion disease: https://scivisionpub.com/pdfs/covid19rna-based-vaccines-and-the-risk-of-prion-dis ease-1503.pdf
  1165. This study notes that 115 pregnant women lost their babies, out of 827 who participated in a study on the safety of covid-19 vaccines: https://www.nejm.org/doi/full/10.1056/NEJMoa2104983.
  1166. Process-related impurities in the ChAdOx1 nCov-19 vaccine: https://www.researchsquare.com/article/rs-477964/v1
  1167. COVID-19 mRNA vaccine causing CNS inflammation: a case series: https://link.springer.com/article/10.1007/s00415-021-10780-7
  1168. Allergic reactions, including anaphylaxis, after receiving the first dose of the Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33475702/
  1169. Allergic reactions to the first COVID-19 vaccine: a potential role of polyethylene glycol: https://pubmed.ncbi.nlm.nih.gov/33320974/
  1170. Pfizer Vaccine Raises Allergy Concerns: https://pubmed.ncbi.nlm.nih.gov/33384356/
  1171. Allergic reactions, including anaphylaxis, after receiving the first dose of Pfizer-BioNTech COVID-19 vaccine – United States, December 14-23, 2020: https://pubmed.ncbi.nlm.nih.gov/33444297/
  1172. Allergic reactions, including anaphylaxis, after receiving first dose of Modern COVID-19 vaccine – United States, December 21, 2020-January 10, 2021: https://pubmed.ncbi.nlm.nih.gov/33507892/
  1173. Reports of anaphylaxis after coronavirus disease vaccination 2019, South Korea, February 26-April 30, 2021: https://pubmed.ncbi.nlm.nih.gov/34414880/
  1174. Reports of anaphylaxis after receiving COVID-19 mRNA vaccines in the U.S.-Dec 14, 2020-Jan 18, 2021: https://pubmed.ncbi.nlm.nih.gov/33576785/
  1175. Immunization practices and risk of anaphylaxis: a current, comprehensive update of COVID-19 vaccination data: https://pubmed.ncbi.nlm.nih.gov/34269740/
  1176. Relationship between pre-existing allergies and anaphylactic reactions following administration of COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34215453/
  1177. Anaphylaxis Associated with COVID-19 mRNA Vaccines: Approach to Allergy Research: https://pubmed.ncbi.nlm.nih.gov/33932618/
  1178. Severe Allergic Reactions after COVID-19 Vaccination with the Pfizer / BioNTech Vaccine in Great Britain and the USA: Position Statement of the German Allergy Societies: German Medical Association of Allergologists (AeDA), German Society for Allergology and Clinical Immunology (DGAKI) and Society for Pediatric Allergology and Environmental Medicine (GPA): https://pubmed.ncbi.nlm.nih.gov/33643776/
  1179. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/33571463/
  1180. Reported orofacial adverse effects from COVID-19 vaccines: the known and the unknown: https://pubmed.ncbi.nlm.nih.gov/33527524/
  1181. Cutaneous adverse effects of available COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34518015/
  1182. Cumulative adverse event report of anaphylaxis following injections of COVID-19 mRNA vaccine (Pfizer-BioNTech) in Japan: the first month report: https://pubmed.ncbi.nlm.nih.gov/34347278/
  1183. COVID-19 vaccines increase the risk of anaphylaxis: https://pubmed.ncbi.nlm.nih.gov/33685103/
  1184. Biphasic anaphylaxis after exposure to the first dose of the Pfizer-BioNTech COVID-19 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34050949/
  1185. Allergenic components of the mRNA-1273 vaccine for COVID-19: possible involvement of polyethylene glycol and IgG-mediated complement activation: https://pubmed.ncbi.nlm.nih.gov/33657648/
  1186. Polyethylene glycol (PEG) is a cause of anaphylaxis to Pfizer / BioNTech mRNA COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33825239/
  1187. Acute allergic reactions to COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/33683290/
  1188. Polyethylene glycole allergy of the SARS CoV2 vaccine recipient: case report of a young adult recipient and management of future exposure to SARS-CoV2: https://pubmed.ncbi.nlm.nih.gov/33919151/
  1189. Elevated rates of anaphylaxis after vaccination with Pfizer BNT162b2 mRNA vaccine against COVID-19 in Japanese healthcare workers; a secondary analysis of initial post-approval safety data: https://pubmed.ncbi.nlm.nih.gov/34128049/
  1190. Allergic reactions and adverse events associated with administration of mRNA-based vaccines. A health system experience: https://pubmed.ncbi.nlm.nih.gov/34474708/
  1191. Allergic reactions to COVID-19 vaccines: statement of the Belgian Society of Allergy and Clinical Immunology (BelSACI): https://www.tandfonline.com/doi/abs/10.1080/17843286.2021.1909447
  1192. .IgE-mediated allergy to polyethylene glycol (PEG) as a cause of anaphylaxis to COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34318537/
  1193. Allergic reactions after COVID-19 vaccination: putting the risk in perspective: https://pubmed.ncbi.nlm.nih.gov/34463751/
  1194. Anaphylactic reactions to COVID-19 mRNA vaccines: a call for further studies: https://pubmed.ncbi.nlm.nih.gov/33846043/ 188.
  1195. Risk of severe allergic reactions to COVID-19 vaccines among patients with allergic skin disease: practical recommendations. An ETFAD position statement with external experts: https://pubmed.ncbi.nlm.nih.gov/33752263/
  1196. COVID-19 vaccine and death: causality algorithm according to the WHO eligibility diagnosis: https://pubmed.ncbi.nlm.nih.gov/34073536/
  1197. Fatal brain hemorrhage after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33928772/
  1198. A case series of skin reactions to COVID-19 vaccine in the Department of Dermatology at Loma Linda University: https://pubmed.ncbi.nlm.nih.gov/34423106/
  1199. Skin reactions reported after Moderna and Pfizer’s COVID-19 vaccination: a study based on a registry of 414 cases: https://pubmed.ncbi.nlm.nih.gov/33838206/
  1200. Clinical and pathologic correlates of skin reactions to COVID-19 vaccine, including V-REPP: a registry-based study: https://pubmed.ncbi.nlm.nih.gov/34517079/
  1201. Skin reactions after vaccination against SARS-COV-2: a nationwide Spanish cross-sectional study of 405 cases: https://pubmed.ncbi.nlm.nih.gov/34254291/
  1202. Varicella zoster virus and herpes simplex virus reactivation after vaccination with COVID-19: review of 40 cases in an international dermatologic registry: https://pubmed.ncbi.nlm.nih.gov/34487581/
  1203. Immune thrombosis and thrombocytopenia (VITT) associated with the COVID-19 vaccine: diagnostic and therapeutic recommendations for a new syndrome: https://pubmed.ncbi.nlm.nih.gov/33987882/
  1204. Laboratory testing for suspicion of COVID-19 vaccine-induced thrombotic (immune) thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34138513/
  1205. Intracerebral hemorrhage due to thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: the first fatal case in Korea: https://pubmed.ncbi.nlm.nih.gov/34402235/
  1206. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and positive SARS-CoV-2 tests: self-controlled case series study: https://pubmed.ncbi.nlm.nih.gov/34446426/
  1207. Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis after covid-19 vaccination; a systematic review: https://pubmed.ncbi.nlm.nih.gov/34365148/.
  1208. Nerve and muscle adverse events after vaccination with COVID-19: a systematic review and meta-analysis of clinical trials: https://pubmed.ncbi.nlm.nih.gov/34452064/.
  1209. A rare case of cerebral venous thrombosis and disseminated intravascular coagulation temporally associated with administration of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33917902/
  1210. Primary adrenal insufficiency associated with thrombotic immune thrombocytopenia induced by Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine (VITT): https://pubmed.ncbi.nlm.nih.gov/34256983/
  1211. Acute cerebral venous thrombosis and pulmonary artery embolism associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34247246/.
  1212. Thromboaspiration infusion and fibrinolysis for portomesenteric thrombosis after administration of AstraZeneca COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34132839/
  1213. 59-year-old woman with extensive deep venous thrombosis and pulmonary thromboembolism 7 days after a first dose of Pfizer-BioNTech BNT162b2 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34117206/
  1214. Cerebral venous thrombosis and vaccine-induced thrombocytopenia.a. Oxford-AstraZeneca COVID-19: a missed opportunity for a rapid return on experience: https://pubmed.ncbi.nlm.nih.gov/34033927/
  1215. Myocarditis and other cardiovascular complications of mRNA-based COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34277198/
  1216. Pericarditis after administration of COVID-19 mRNA BNT162b2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34364831/
  1217. Unusual presentation of acute pericarditis after vaccination against SARS-COV-2 mRNA-1237 Modern: https://pubmed.ncbi.nlm.nih.gov/34447639/
  1218. Case report: acute myocarditis after second dose of SARS-CoV-2 mRNA-1273 vaccine mRNA-1273: https://pubmed.ncbi.nlm.nih.gov/34514306/
  1219. Immune-mediated disease outbreaks or recent-onset disease in 27 subjects after mRNA/DNA vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/33946748/
  1220. Insights from a murine model of myopericarditis induced by COVID-19 mRNA vaccine: could accidental intravenous injection of a vaccine induce myopericarditis: https://pubmed.ncbi.nlm.nih.gov/34453510/
  1221. Immune thrombocytopenia in a 22-year-old post Covid-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33476455/
  1222. propylthiouracil-induced neutrophil anti-cytoplasmic antibody-associated vasculitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34451967/
  1223. Secondary immune thrombocytopenia (ITP) associated with ChAdOx1 Covid-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34377889/
  1224. Thrombosis with thrombocytopenia syndrome (TTS) following AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19 vaccination: risk-benefit analysis for persons <60 years in Australia: https://pubmed.ncbi.nlm.nih.gov/34272095/
  1225. COVID-19 vaccination association and facial nerve palsy: A case-control study: https://pubmed.ncbi.nlm.nih.gov/34165512/
  1226. The association between COVID-19 vaccination and Bell’s palsy: https://pubmed.ncbi.nlm.nih.gov/34411533/
  1227. Bell’s palsy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33611630/
  1228. Acute transverse myelitis (ATM): clinical review of 43 patients with COVID-19-associated ATM and 3 serious adverse events of post-vaccination ATM with ChAdOx1 nCoV-19 vaccine (AZD1222): https://pubmed.ncbi.nlm.nih.gov/33981305/
  1229. Bell’s palsy after 24 hours of mRNA-1273 SARS-CoV-2 mRNA-1273 vaccine: https://pubmed.ncbi.nlm.nih.gov/34336436/
  1230. Sequential contralateral facial nerve palsy after first and second doses of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34281950/.
  1231. Transverse myelitis induced by SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34458035/
  1232. Peripheral facial nerve palsy after vaccination with BNT162b2 (COVID-19): https://pubmed.ncbi.nlm.nih.gov/33734623/
  1233. Acute abducens nerve palsy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34044114/.
  1234. Facial nerve palsy after administration of COVID-19 mRNA vaccines: analysis of self-report database: https://pubmed.ncbi.nlm.nih.gov/34492394/
  1235. Transient oculomotor paralysis after administration of RNA-1273 messenger vaccine for SARS-CoV-2 diplopia after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34369471/
  1236. Bell’s palsy after Ad26.COV2.S COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34014316/
  1237. Bell’s palsy after COVID-19 vaccination: case report: https://pubmed.ncbi.nlm.nih.gov/34330676/
  1238. A case of acute demyelinating polyradiculoneuropathy with bilateral facial palsy following ChAdOx1 nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34272622/
  1239. Guillian Barré syndrome after vaccination with mRNA-1273 against COVID-19: https://pubmed.ncbi.nlm.nih.gov/34477091/
  1240. Acute facial paralysis as a possible complication of SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33975372/.
  1241. Bell’s palsy after COVID-19 vaccination with high antibody response in CSF: https://pubmed.ncbi.nlm.nih.gov/34322761/.
  1242. Parsonage-Turner syndrome associated with SARS-CoV-2 or SARS-CoV-2 vaccination. Comment on: “Neuralgic amyotrophy and COVID-19 infection: 2 cases of accessory spinal nerve palsy” by Coll et al. Articular Spine 2021; 88: 10519: https://pubmed.ncbi.nlm.nih.gov/34139321/.
  1243. Bell’s palsy after a single dose of vaccine mRNA. SARS-CoV-2: case report: https://pubmed.ncbi.nlm.nih.gov/34032902/.
  1244. Autoimmune hepatitis developing after coronavirus disease vaccine 2019 (COVID-19): causality or victim?: https://pubmed.ncbi.nlm.nih.gov/33862041/
  1245. Autoimmune hepatitis triggered by vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34332438/
  1246. Acute autoimmune-like hepatitis with atypical antimitochondrial antibody after vaccination with COVID-19 mRNA: a new clinical entity: https://pubmed.ncbi.nlm.nih.gov/34293683/.
  1247. Autoimmune hepatitis after COVID vaccine: https://pubmed.ncbi.nlm.nih.gov/34225251/
  1248. A novel case of bifacial diplegia variant of Guillain-Barré syndrome after vaccination with Janssen COVID-19: https://pubmed.ncbi.nlm.nih.gov/34449715/
  1249. Comparison of vaccine-induced thrombotic events between ChAdOx1 nCoV-19 and Ad26.COV.2.S vaccines: https://pubmed.ncbi.nlm.nih.gov/34139631/.
  1250. Bilateral superior ophthalmic vein thrombosis, ischemic stroke and immune thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/33864750/
  1251. Diagnosis and treatment of cerebral venous sinus thrombosis with vaccine-induced immune-immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/33914590/
  1252. Venous sinus thrombosis after vaccination with ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34420802/
  1253. Cerebral venous sinus thrombosis following vaccination against SARS-CoV-2: an analysis of cases reported to the European Medicines Agency: https://pubmed.ncbi.nlm.nih.gov/34293217/
  1254. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and positive SARS-CoV-2 tests: self-controlled case series study: https://pubmed.ncbi.nlm.nih.gov/34446426/
  1255. Blood clots and bleeding after BNT162b2 and ChAdOx1 nCoV-19 vaccination: an analysis of European data: https://pubmed.ncbi.nlm.nih.gov/34174723/
  1256. Arterial events, venous thromboembolism, thrombocytopenia and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/33952445/
  1257. First dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland: https://pubmed.ncbi.nlm.nih.gov/34108714/
  1258. Cerebral venous thrombosis associated with COVID-19 vaccine in Germany: https://pubmed.ncbi.nlm.nih.gov/34288044/
  1259. Malignant cerebral infarction after vaccination with ChAdOx1 nCov-19: a catastrophic variant of vaccine-induced immune-mediated thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34341358/
  1260. celiac artery and splenic artery thrombosis complicated by splenic infarction 7 days after the first dose of Oxford vaccine, causal relationship or coincidence: https://pubmed.ncbi.nlm.nih.gov/34261633/.
  1261. Primary adrenal insufficiency associated with Oxford-AstraZeneca ChAdOx1 nCoV-19 (VITT) vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34256983/
  1262. Thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34332437/.
  1263. Cerebral venous sinus thrombosis associated with thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33845870/.
  1264. Thrombosis with thrombocytopenia syndrome after COVID-19 immunization: https://pubmed.ncbi.nlm.nih.gov/34236343/
  1265. Acute myocardial infarction within 24 hours after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34364657/.
  1266. Bilateral acute macular neuroretinopathy after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34287612/
  1267. central venous sinus thrombosis with subarachnoid hemorrhage after COVID-19 mRNA vaccination: are these reports merely coincidental: https://pubmed.ncbi.nlm.nih.gov/34478433/
  1268. Intracerebral hemorrhage due to thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: the first fatal case in Korea: https://pubmed.ncbi.nlm.nih.gov/34402235/
  1269. Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in a non-comorbid elderly Indian male treated with conventional heparin-warfarin-based anticoagulation: https://pubmed.ncbi.nlm.nih.gov/34186376/
  1270. Cerebral venous sinus thrombosis 2 weeks after first dose of SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34101024/
  1271. A case of multiple thrombocytopenia and thrombosis following vaccination with ChAdOx1 nCoV-19 against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34137813/
  1272. Vaccine-induced thrombotic thrombocytopenia: the elusive link between thrombosis and adenovirus-based SARS-CoV-2 vaccines: https://pubmed.ncbi.nlm.nih.gov/34191218/
  1273. Acute ischemic stroke revealing immune thrombotic thrombocytopenia induced by ChAdOx1 nCov-19 vaccine: impact on recanalization strategy: https://pubmed.ncbi.nlm.nih.gov/34175640/
  1274. New-onset refractory status epilepticus after ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34153802/
  1275. Thrombosis with thrombocytopenia syndrome associated with COVID-19 viral vector vaccines: https://pubmed.ncbi.nlm.nih.gov/34092488/
  1276. Pulmonary embolism, transient ischemic attack, and thrombocytopenia after Johnson & Johnson COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34261635/
  1277. Thromboaspiration infusion and fibrinolysis for portomesenteric thrombosis after administration of the AstraZeneca COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34132839/.
  1278. Spontaneous HIT syndrome: knee replacement, infection, and parallels with vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34144250/
  1279. Deep venous thrombosis (DVT) occurring shortly after second dose of SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/33687691/
  1280. Procoagulant antibody-mediated procoagulant platelets in immune thrombotic thrombocytopenia associated with SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34011137/.
  1281. Vaccine-induced immune thrombotic thrombocytopenia causing a severe form of cerebral venous thrombosis with high mortality rate: a case series: https://pubmed.ncbi.nlm.nih.gov/34393988/.
  1282. Procoagulant microparticles: a possible link between vaccine-induced immune thrombocytopenia (VITT) and cerebral sinus venous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34129181/.
  1283. Atypical thrombosis associated with the vaccine VaxZevria® (AstraZeneca): data from the French network of regional pharmacovigilance centers: https://pubmed.ncbi.nlm.nih.gov/34083026/.
  1284. Acute cerebral venous thrombosis and pulmonary artery embolism associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34247246/.
  1285. Vaccine-induced thrombosis and thrombocytopenia with bilateral adrenal haemorrhage: https://pubmed.ncbi.nlm.nih.gov/34235757/.
  1286. Palmar digital vein thrombosis after Oxford-AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34473841/.
  1287. Cutaneous thrombosis associated with cutaneous necrosis following Oxford-AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34189756/
  1288. Cerebral venous thrombosis following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34045111/.
  1289. Lipschütz ulcers after AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34366434/.
  1290. Amyotrophic Neuralgia secondary to Vaxzevri vaccine (AstraZeneca) COVID-19: https://pubmed.ncbi.nlm.nih.gov/34330677/
  1291. Thrombosis with thrombocytopenia after Messenger vaccine RNA-1273: https://pubmed.ncbi.nlm.nih.gov/34181446/
  1292. Intracerebral hemorrhage twelve days after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34477089/
  1293. Thrombotic thrombocytopenia after vaccination with COVID-19: in search of the underlying mechanism: https://pubmed.ncbi.nlm.nih.gov/34071883/
  1294. Coronavirus (COVID-19) Vaccine-induced immune thrombotic thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34033367/
  1295. Comparison of adverse drug reactions among four COVID-19 vaccines in Europe using the EudraVigilance database: Thrombosis in unusual sites: https://pubmed.ncbi.nlm.nih.gov/34375510/
  1296. Immunoglobulin adjuvant for vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34107198/
  1297. Severe vaccine-induced thrombotic thrombocytopenia following vaccination with COVID-19: an autopsy case report and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34355379/.
  1298. A case of acute pulmonary embolism after immunization with SARS-CoV-2 mRNA: https://pubmed.ncbi.nlm.nih.gov/34452028/
  1299. Neurosurgical considerations regarding decompressive craniectomy for intracerebral hemorrhage after SARS-CoV-2 vaccination in vaccine-induced thrombotic thrombocytopenia-VITT: https://pubmed.ncbi.nlm.nih.gov/34202817/
  1300. Thrombosis and SARS-CoV-2 vaccines: vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34237213/.
  1301. Acquired thrombotic thrombocytopenic thrombocytopenic purpura: a rare disease associated with the BNT162b2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34105247/.
  1302. Immune complexes, innate immunity and NETosis in ChAdOx1 vaccine-induced thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34405870/.
  1303. Sensory Guillain-Barré syndrome following ChAdOx1 nCov-19 vaccine: report of two cases and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34416410/.
  1304. Vogt-Koyanagi-Harada syndrome after COVID-19 and ChAdOx1 nCoV-19 (AZD1222) vaccination: https://pubmed.ncbi.nlm.nih.gov/34462013/.
  1305. Reactivation of Vogt-Koyanagi-Harada disease under control for more than 6 years, after anti-SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34224024/.
  1306. Post-vaccinal encephalitis after ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34324214/
  1307. Neurological symptoms and neuroimaging alterations related to COVID-19 vaccine: cause or coincidence?: https://pubmed.ncbi.nlm.nih.gov/34507266/
  1308. Fatal systemic capillary leak syndrome after SARS-COV-2 vaccination in a patient with multiple myeloma: https://pubmed.ncbi.nlm.nih.gov/34459725/
  1309. Polyarthralgia and myalgia syndrome after vaccination with ChAdOx1 nCOV-19: https://pubmed.ncbi.nlm.nih.gov/34463066/
  1310. Three cases of subacute thyroiditis after SARS-CoV-2 vaccination: post-vaccination ASIA syndrome: https://pubmed.ncbi.nlm.nih.gov/34043800/.
  1311. Facial diplegia: a rare and atypical variant of Guillain-Barré syndrome and the Ad26.COV2.S vaccine: https://pubmed.ncbi.nlm.nih.gov/34447646/
  1312. Association between ChAdOx1 nCoV-19 vaccination and bleeding episodes: large population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/34479760/.
  1313. fulminant myocarditis and systemic hyperinflammation temporally associated with BNT162b2 COVID-19 mRNA vaccination in two patients: https://pubmed.ncbi.nlm.nih.gov/34416319/.
  1314. Adverse effects reported after COVID-19 vaccination in a tertiary care hospital, centered on cerebral venous sinus thrombosis (CVST): https://pubmed.ncbi.nlm.nih.gov/34092166/
  1315. Induction and exacerbation of subacute cutaneous lupus erythematosus erythematosus after mRNA- or adenoviral vector-based SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34291477/
  1316. Petechiae and peeling of fingers after immunization with BTN162b2 messenger RNA (mRNA)-based COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34513435/
  1317. Hepatitis C virus reactivation after COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34512037/
  1318. Bilateral immune-mediated keratolysis after immunization with SARS-CoV-2 recombinant viral vector vaccine: https://pubmed.ncbi.nlm.nih.gov/34483273/.
  1319. Immune-mediated thrombocytopenic purpura after Pfizer-BioNTech COVID-19 vaccine in an elderly woman: https://pubmed.ncbi.nlm.nih.gov/34513446/
  1320. Platelet activation and modulation in thrombosis with thrombocytopenia syndrome associated with the ChAdO × 1 nCov-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34474550/
  1321. Reactive arthritis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34033732/.
  1322. Two cases of Graves’ disease after SARS-CoV-2 vaccination: an autoimmune / inflammatory syndrome induced by adjuvants: https://pubmed.ncbi.nlm.nih.gov/33858208/
  1323. Acute relapse and impaired immunization after COVID-19 vaccination in a patient with multiple sclerosis treated with rituximab: https://pubmed.ncbi.nlm.nih.gov/34015240/
  1324. Widespread fixed bullous drug eruption after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34482558/
  1325. COVID-19 mRNA vaccine causing CNS inflammation: a case series: https://pubmed.ncbi.nlm.nih.gov/34480607/
  1326. Thymic hyperplasia after Covid-19 mRNA-based vaccination with Covid-19: https://pubmed.ncbi.nlm.nih.gov/34462647/
  1327. Acute disseminated encephalomyelitis following vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34325334/
  1328. Tolosa-Hunt syndrome occurring after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34513398/
  1329. Systemic capillary extravasation syndrome following vaccination with ChAdOx1 nCOV-19 (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34362727/
  1330. Immune-mediated thrombocytopenia associated with Ad26.COV2.S vaccine (Janssen; Johnson & Johnson): https://pubmed.ncbi.nlm.nih.gov/34469919/.
  1331. Transient thrombocytopenia with glycoprotein-specific platelet autoantibodies after vaccination with Ad26.COV2.S: case report: https://pubmed.ncbi.nlm.nih.gov/34516272/.
  1332. Acute hyperactive encephalopathy following COVID-19 vaccination with dramatic response to methylprednisolone: case report: https://pubmed.ncbi.nlm.nih.gov/34512961/
  1333. Transient cardiac injury in adolescents receiving the BNT162b2 mRNA COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34077949/
  1334. Autoimmune hepatitis developing after ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34171435/
  1335. Severe relapse of multiple sclerosis after COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34447349/
  1336. Lymphohistocytic myocarditis after vaccination with the COVID-19 viral vector Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34514078/
  1337. Hemophagocytic lymphohistiocytosis after vaccination with ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34406660/.
  1338. IgA vasculitis in adult patient after vaccination with ChadOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34509658/
  1339. A case of leukocytoclastic vasculitis after vaccination with a SARS-CoV2 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34196469/.
  1340. Onset / outbreak of psoriasis after Corona virus ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca / Covishield): report of two cases: https://pubmed.ncbi.nlm.nih.gov/34350668/
  1341. Hailey-Hailey disease exacerbation after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34436620/
  1342. Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up by ultrasonography: https://pubmed.ncbi.nlm.nih.gov/34116295/.
  1343. COVID-19 vaccine, immune thrombotic thrombocytopenia, jaundice, hyperviscosity: concern in cases with underlying hepatic problems: https://pubmed.ncbi.nlm.nih.gov/34509271/.
  1344. Report of the International Cerebral Venous Thrombosis Consortium on cerebral venous thrombosis after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34462996/
  1345. Immune thrombocytopenia after vaccination during the COVID-19 pandemic: https://pubmed.ncbi.nlm.nih.gov/34435486/
  1346. COVID-19: lessons from the Norwegian tragedy should be taken into account in planning for vaccine launch in less developed/developing countries: https://pubmed.ncbi.nlm.nih.gov/34435142/
  1347. Rituximab-induced acute lympholysis and pancytopenia following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34429981/
  1348. Exacerbation of plaque psoriasis after COVID-19 inactivated mRNA and BNT162b2 vaccines: report of two cases: https://pubmed.ncbi.nlm.nih.gov/34427024/
  1349. Vaccine-induced interstitial lung disease: a rare reaction to COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34510014/.
  1350. Vesiculobullous cutaneous reactions induced by COVID-19 mRNA vaccine: report of four cases and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34236711/
  1351. Vaccine-induced thrombocytopenia with severe headache: https://pubmed.ncbi.nlm.nih.gov/34525282/
  1352. Acute perimyocarditis after the first dose of COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34515024/
  1353. Rhabdomyolysis and fasciitis induced by COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34435250/.
  1354. Rare cutaneous adverse effects of COVID-19 vaccines: a case series and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34363637/
  1355. Immune thrombocytopenia associated with the Pfizer-BioNTech COVID-19 mRNA vaccine BNT162b2: https://www.sciencedirect.com/science/article/pii/S2214250921002018
  1356. Secondary immune thrombocytopenia putatively attributable to COVID-19 vaccination: https://casereports.bmj.com/content/14/5/e242220.abstract.
  1357. Immune thrombocytopenia following Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34155844/
  1358. Newly diagnosed idiopathic thrombocytopenia after COVID-19 vaccine administration: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176657/.
  1359. Idiopathic thrombocytopenic purpura and the Modern Covid-19 vaccine: https://www.annemergmed.com/article/S0196-0644(21)00122-0/fulltext.
  1360. Thrombocytopenia after Pfizer and Moderna SARS vaccination – CoV -2: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014568/.
  1361. Immune thrombocytopenic purpura and acute liver injury after COVID-19 vaccination: https://casereports.bmj.com/content/14/7/e242678.
  1362. Collection of complement-mediated and autoimmune-mediated hematologic conditions after SARS-CoV-2 vaccination: https://ashpublications.org/bloodadvances/article/5/13/2794/476324/Autoimmune-and-complement-mediated-hematologic
  1363. Petechial rash associated with CoronaVac vaccination: first report of cutaneous side effects before phase 3 results: https://ejhp.bmj.com/content/early/2021/05/23/ejhpharm-2021-002794
  1364. COVID-19 vaccines induce severe hemolysis in paroxysmal nocturnal hemoglobinuria: https://ashpublications.org/blood/article/137/26/3670/475905/COVID-19-vaccines-induce-severe-hemolysis-in
  1365. Cerebral venous thrombosis associated with COVID-19 vaccine in Germany: https://pubmed.ncbi.nlm.nih.gov/34288044/.
  1366. Cerebral venous sinus thrombosis after COVID-19 vaccination : Neurological and radiological management: https://pubmed.ncbi.nlm.nih.gov/34327553/.
  1367. Cerebral venous thrombosis and thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33878469/.
  1368. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination: report of two cases in the United Kingdom: https://pubmed.ncbi.nlm.nih.gov/33857630/.
  1369. Cerebral venous thrombosis induced by SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34090750/.
  1370. Carotid artery immune thrombosis induced by adenovirus-vectored COVID-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34312301/.
  1371. Cerebral venous sinus thrombosis associated with vaccine-induced thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34333995/
  1372. The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune-immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34455073/
  1373. Cerebral venous thrombosis after the BNT162b2 mRNA SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34111775/.
  1374. Cerebral venous thrombosis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34045111/
  1375. Lethal cerebral venous sinus thrombosis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33983464/
  1376. Cerebral venous sinus thrombosis in the U.S. population, After SARS-CoV-2 vaccination with adenovirus and after COVID-19: https://pubmed.ncbi.nlm.nih.gov/34116145/
  1377. Cerebral venous thrombosis after COVID-19 vaccination: is the risk of thrombosis increased by intravascular administration of the vaccine: https://pubmed.ncbi.nlm.nih.gov/34286453/.
  1378. Central venous sinus thrombosis with subarachnoid hemorrhage after COVID-19 mRNA vaccination: are these reports merely coincidental: https://pubmed.ncbi.nlm.nih.gov/34478433/
  1379. Cerebral venous sinus thrombosis after ChAdOx1 nCov-19 vaccination with a misleading first brain MRI: https://pubmed.ncbi.nlm.nih.gov/34244448/
  1380. Early results of bivalirudin treatment for thrombotic thrombocytopenia and cerebral venous sinus thrombosis after vaccination with Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34226070/
  1381. Cerebral venous sinus thrombosis associated with post-vaccination thrombocytopenia by COVID-19: https://pubmed.ncbi.nlm.nih.gov/33845870/.
  1382. Cerebral venous sinus thrombosis 2 weeks after the first dose of SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34101024/.
  1383. Vaccine-induced immune thrombotic thrombocytopenia causing a severe form of cerebral venous thrombosis with a high mortality rate: a case series: https://pubmed.ncbi.nlm.nih.gov/34393988/.
  1384. Adenovirus interactions with platelets and coagulation and vaccine-associated autoimmune thrombocytopenia thrombosis syndrome: https://pubmed.ncbi.nlm.nih.gov/34407607/.
  1385. Headache attributed to COVID-19 (SARS-CoV-2 coronavirus) vaccination with the ChAdOx1 nCoV-19 (AZD1222) vaccine: a multicenter observational cohort study: https://pubmed.ncbi.nlm.nih.gov/34313952/
  1386. Adverse effects reported after COVID-19 vaccination in a tertiary care hospital, focus on cerebral venous sinus thrombosis (CVST): https://pubmed.ncbi.nlm.nih.gov/34092166/
  1387. Cerebral venous sinus thrombosis following vaccination against SARS-CoV-2: an analysis of cases reported to the European Medicines Agency: https://pubmed.ncbi.nlm.nih.gov/34293217/
  1388. A rare case of a middle-age Asian male with cerebral venous thrombosis after COVID-19 AstraZeneca vaccination: https://pubmed.ncbi.nlm.nih.gov/34274191/
  1389. Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in a non-comorbid elderly Indian male treated with conventional heparin-warfarin-based anticoagulation: https://pubmed.ncbi.nlm.nih.gov/34186376/
  1390. Arterial events, venous thromboembolism, thrombocytopenia and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/33952445/
  1391. Procoagulant microparticles: a possible link between vaccine-induced immune thrombocytopenia (VITT) and cerebral sinus venous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34129181/
  1392. S. case reports of cerebral venous sinus thrombosis with thrombocytopenia after vaccination with Ad26.COV2.S, March 2-April 21, 2021: https://pubmed.ncbi.nlm.nih.gov/33929487/.
  1393. Malignant cerebral infarction after vaccination with ChAdOx1 nCov-19: a catastrophic variant of vaccine-induced immune-mediated thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34341358/
  1394. Acute ischemic stroke revealing immune thrombotic thrombocytopenia induced by ChAdOx1 nCov-19 vaccine: impact on recanalization strategy: https://pubmed.ncbi.nlm.nih.gov/34175640/
  1395. Vaccine-induced immune thrombotic immune thrombocytopenia (VITT): a new clinicopathologic entity with heterogeneous clinical presentations: https://pubmed.ncbi.nlm.nih.gov/34159588/.
  1396. Imaging and hematologic findings in thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19 (AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34402666/
  1397. Autoimmunity roots of thrombotic events after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34508917/
  1398. Cerebral venous sinus thrombosis after vaccination: the UK experience: https://pubmed.ncbi.nlm.nih.gov/34370974/
  1399. Massive cerebral venous thrombosis and venous basin infarction as late complications of COVID-19: a case report: https://pubmed.ncbi.nlm.nih.gov/34373991/
  1400. Australian and New Zealand approach to the diagnosis and treatment of vaccine-induced immune thrombosis and immune thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34490632/
  1401. An observational study to identify the prevalence of thrombocytopenia and anti-PF4 / polyanion antibodies in Norwegian health care workers after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33909350/
  1402. Acute transverse myelitis (ATM): clinical review of 43 patients with COVID-19-associated ATM and 3 serious adverse events of post-vaccination ATM with ChAdOx1 nCoV-19 (AZD1222) vaccine: https://pubmed.ncbi.nlm.nih.gov/33981305/.
  1403. A case of acute demyelinating polyradiculoneuropathy with bilateral facial palsy after ChAdOx1 nCoV-19 vaccine:. https://pubmed.ncbi.nlm.nih.gov/34272622/
  1404. Thrombocytopenia with acute ischemic stroke and hemorrhage in a patient recently vaccinated with an adenoviral vector-based COVID-19 vaccine:. https://pubmed.ncbi.nlm.nih.gov/33877737/
  1405. Predicted and observed incidence of thromboembolic events among Koreans vaccinated with the ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34254476/
  1406. First dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic, and hemorrhagic events in Scotland: https://pubmed.ncbi.nlm.nih.gov/34108714/
  1407. ChAdOx1 nCoV-19 vaccine-associated thrombocytopenia: three cases of immune thrombocytopenia after 107,720 doses of ChAdOx1 vaccination in Thailand: https://pubmed.ncbi.nlm.nih.gov/34483267/.
  1408. Pulmonary embolism, transient ischemic attack, and thrombocytopenia after Johnson & Johnson COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34261635/
  1409. Neurosurgical considerations with respect to decompressive craniectomy for intracerebral hemorrhage after SARS-CoV-2 vaccination in vaccine-induced thrombotic thrombocytopenia-VITT: https://pubmed.ncbi.nlm.nih.gov/34202817/
  1410. Large hemorrhagic stroke after vaccination against ChAdOx1 nCoV-19: a case report: https://pubmed.ncbi.nlm.nih.gov/34273119/
  1411. Polyarthralgia and myalgia syndrome after vaccination with ChAdOx1 nCOV-19: https://pubmed.ncbi.nlm.nih.gov/34463066/
  1412. A rare case of thrombosis and thrombocytopenia of the superior ophthalmic vein after ChAdOx1 nCoV-19 vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34276917/
  1413. Thrombosis and severe acute respiratory syndrome Coronavirus 2 vaccines: vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34237213/.
  1414. Renal vein thrombosis and pulmonary embolism secondary to vaccine-induced thrombotic immune thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34268278/.
  1415. Limb ischemia and pulmonary artery thrombosis after ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca): a case of vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/33990339/.
  1416. Association between ChAdOx1 nCoV-19 vaccination and bleeding episodes: large population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/34479760/.
  1417. Secondary thrombocytopenia after SARS-CoV-2 vaccination: case report of haemorrhage and hematoma after minor oral surgery: https://pubmed.ncbi.nlm.nih.gov/34314875/.
  1418. Venous thromboembolism and mild thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34384129/
  1419. Fatal exacerbation of ChadOx1-nCoV-19-induced thrombotic thrombocytopenia syndrome after successful initial therapy with intravenous immunoglobulins: a rationale for monitoring immunoglobulin G levels: https://pubmed.ncbi.nlm.nih.gov/34382387/
  1420. A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: victim or causality?: https://pubmed.ncbi.nlm.nih.gov/34416184/.
  1421. Intracerebral hemorrhage associated with vaccine-induced thrombotic thrombocytopenia after ChAdOx1 nCOVID-19 vaccination in a pregnant woman: https://pubmed.ncbi.nlm.nih.gov/34261297/
  1422. Massive cerebral venous thrombosis due to vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34261296/
  1423. Nephrotic syndrome after ChAdOx1 nCoV-19 vaccine against SARScoV-2: https://pubmed.ncbi.nlm.nih.gov/34250318/.
  1424. A case of vaccine-induced immune-immune thrombotic thrombocytopenia with massive arteriovenous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34059191/
  1425. Cutaneous thrombosis associated with cutaneous necrosis following Oxford-AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34189756/
  1426. Thrombocytopenia in an adolescent with sickle cell anemia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34331506/
  1427. Vaccine-induced thrombocytopenia with severe headache: https://pubmed.ncbi.nlm.nih.gov/34525282/
  1428. Myocarditis associated with SARS-CoV-2 mRNA vaccination in children aged 12 to 17 years: stratified analysis of a national database: https://www.medrxiv.org/content/10.1101/2021.08.30.21262866v1
  1429. COVID-19 mRNA vaccination and development of CMR-confirmed myopericarditis: https://www.medrxiv.org/content/10.1101/2021.09.13.21262182v1.full?s=09.
  1430. Severe autoimmune hemolytic anemia after receipt of SARS-CoV-2 mRNA vaccine: https://onlinelibrary.wiley.com/doi/10.1111/trf.16672
  1431. Intravenous injection of coronavirus disease 2019 (COVID-19) mRNA vaccine can induce acute myopericarditis in a mouse model: https://t.co/j0IEM8cMXI
  1432. A report of myocarditis adverse events in the U.S. Vaccine Adverse Event Reporting System. (VAERS) in association with COVID-19 injectable biologics: https://pubmed.ncbi.nlm.nih.gov/34601006/
  1433. This study concludes that: “The vaccine was associated with an excess risk of myocarditis (1 to 5 events per 100,000 persons). The risk of this potentially serious adverse event and of many other serious adverse events increased substantially after SARS-CoV-2 infection”: https://www.nejm.org/doi/full/10.1056/NEJMoa2110475
  1434. Bilateral uveitis after inoculation with COVID-19 vaccine: a case report: https://www.sciencedirect.com/science/article/pii/S1201971221007797
  1435. Myocarditis associated with SARS-CoV-2 mRNA vaccination in children aged 12 to 17 years: stratified analysis of a national database: https://www.medrxiv.org/content/10.1101/2021.08.30.21262866v1.
  1436. Immune-mediated hepatitis with the Moderna vaccine is no longer a coincidence but confirmed: https://www.sciencedirect.com/science/article/pii/S0168827821020936
  1437. Extensive investigations revealed consistent pathophysiologic alterations after vaccination with COVID-19 vaccines: https://www.nature.com/articles/s41421-021-00329-3
  1438. Lobar hemorrhage with ventricular rupture shortly after the first dose of an mRNA-based SARS-CoV-2 vaccine: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8553377/
  1439. Mrna COVID vaccines dramatically increase endothelial inflammatory markers and risk of Acute Coronary Syndrome as measured by PULS cardiac testing: a caution: https://www.ahajournals.org/doi/10.1161/circ.144.suppl_1.10712
  1440. ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome:https://www.science.org/doi/10.1126/sciadv.abl8213
  1441. Lethal vaccine-induced immune thrombotic immune thrombocytopenia (VITT) following announcement 26.COV2.S: first documented case outside the U.S.: https://pubmed.ncbi.nlm.nih.gov/34626338/
  1442. A prothrombotic thrombocytopenic disorder resembling heparin-induced thrombocytopenia after coronavirus-19 vaccination: https://europepmc.org/article/PPR/PPR304469 435.
  1443. VITT (vaccine-induced immune thrombotic thrombocytopenia) after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34731555/
  1444. Vaccine-induced immune thrombotic thrombocytopenia (VITT): a new clinicopathologic entity with heterogeneous clinical presentations: https://pubmed.ncbi.nlm.nih.gov/34159588/
  1445. Treatment of acute ischemic stroke associated with ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34461442/
  1446. Spectrum of neurological complications after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34719776/.
  1447. Cerebral venous sinus thrombosis after vaccination: the UK experience: https://pubmed.ncbi.nlm.nih.gov/34370974/
  1448. Cerebral venous vein/venous sinus thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34373413/
  1449. Portal vein thrombosis due to vaccine-induced immune thrombotic immune thrombocytopenia (VITT) after Covid vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34598301/
  1450. Hematuria, a generalized petechial rash and headaches after Oxford AstraZeneca ChAdOx1 nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34620638/
  1451. Myocardial infarction and azygos vein thrombosis after vaccination with ChAdOx1 nCoV-19 in a hemodialysis patient: https://pubmed.ncbi.nlm.nih.gov/34650896/
  1452. Takotsubo (stress) cardiomyopathy after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34625447/
  1453. Humoral response induced by Prime-Boost vaccination with ChAdOx1 nCoV-19 and BNT162b2 mRNA vaccines in a patient with multiple sclerosis treated with teriflunomide: https://pubmed.ncbi.nlm.nih.gov/34696248/
  1454. Guillain-Barré syndrome after ChAdOx1 nCoV-19 COVID-19 vaccination: a case series: https://pubmed.ncbi.nlm.nih.gov/34548920/
  1455. Refractory vaccine-induced immune thrombotic thrombocytopenia (VITT) treated with delayed therapeutic plasma exchange (TPE): https://pubmed.ncbi.nlm.nih.gov/34672380/.
  1456. Rare case of COVID-19 vaccine-associated intracranial hemorrhage with venous sinus thrombosis: https://pubmed.ncbi.nlm.nih.gov/34556531/.
  1457. Delayed headache after COVID-19 vaccination: a warning sign for vaccine-induced cerebral venous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34535076/.
  1458. Clinical features of vaccine-induced thrombocytopenia and immune thrombosis: https://pubmed.ncbi.nlm.nih.gov/34379914/.
  1459. Predictors of mortality in thrombotic thrombocytopenia after adenoviral COVID-19 vaccination: the FAPIC score: https://pubmed.ncbi.nlm.nih.gov/34545400/
  1460. Ischemic stroke as a presenting feature of immune thrombotic thrombocytopenia induced by ChAdOx1-nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34035134/
  1461. In-hospital observational study of neurological disorders in patients recently vaccinated with COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34688190/
  1462. Endovascular treatment for vaccine-induced cerebral venous sinus thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19: report of three cases: https://pubmed.ncbi.nlm.nih.gov/34782400/
  1463. Cardiovascular, neurological, and pulmonary events after vaccination with BNT162b2, ChAdOx1 nCoV-19, and Ad26.COV2.S vaccines: an analysis of European data: https://pubmed.ncbi.nlm.nih.gov/34710832/
  1464. Cerebral venous thrombosis developing after vaccination. COVID-19: VITT, VATT, TTS and more: https://pubmed.ncbi.nlm.nih.gov/34695859/
  1465. Cerebral venous thrombosis and myeloproliferative neoplasms: a three-center study of 74 consecutive cases: https://pubmed.ncbi.nlm.nih.gov/34453762/.
  1466. Possible triggers of thrombocytopenia and/or hemorrhage by BNT162b2 vaccine, Pfizer-BioNTech: https://pubmed.ncbi.nlm.nih.gov/34660652/.
  1467. Multiple sites of arterial thrombosis in a 35-year-old patient after vaccination with ChAdOx1 (AstraZeneca), which required emergency femoral and carotid surgical thrombectomy: https://pubmed.ncbi.nlm.nih.gov/34644642/
  1468. Case series of vaccine-induced thrombotic thrombocytopenia in a London teaching hospital: https://pubmed.ncbi.nlm.nih.gov/34694650/
  1469. Neuro-ophthalmic complications with thrombocytopenia and thrombosis induced by ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34726934/
  1470. Thrombotic events after COVID-19 vaccination in over 50 years of age: results of a population-based study in Italy: https://pubmed.ncbi.nlm.nih.gov/34835237/
  1471. Intracerebral hemorrhage associated with vaccine-induced thrombotic thrombocytopenia after ChAdOx1 nCOVID-19 vaccination in a pregnant woman: https://pubmed.ncbi.nlm.nih.gov/34261297/
  1472. Age- and sex-specific incidence of cerebral venous sinus thrombosis associated with Ad26.COV2.S COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34724036/.
  1473. Genital necrosis with cutaneous thrombosis following vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34839563/
  1474. Cerebral venous sinus thrombosis after mRNA-based COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34783932/.
  1475. COVID-19 vaccine-induced immune thrombosis with thrombocytopenia thrombosis (VITT) and shades of gray in thrombus formation: https://pubmed.ncbi.nlm.nih.gov/34624910/
  1476. Inflammatory myositis after vaccination with ChAdOx1: https://pubmed.ncbi.nlm.nih.gov/34585145/
  1477. Acute ST-segment elevation myocardial infarction secondary to vaccine-induced immune thrombosis with thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34580132/.
  1478. A rare case of COVID-19 vaccine-induced thrombotic thrombocytopenia (VITT) affecting the venosplanchnic and pulmonary arterial circulation from a UK district general hospital: https://pubmed.ncbi.nlm.nih.gov/34535492/
  1479. COVID-19 vaccine-induced thrombotic thrombocytopenia: a case series: https://pubmed.ncbi.nlm.nih.gov/34527501/
  1480. Thrombosis with thrombocytopenia syndrome (TTS) after vaccination with AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19: a risk-benefit analysis for persons <60% risk-benefit analysis for people <60 years in Australia: https://pubmed.ncbi.nlm.nih.gov/34272095/
  1481. Immune thrombocytopenia after immunization with Vaxzevria ChadOx1-S vaccine (AstraZeneca), Victoria, Australia: https://pubmed.ncbi.nlm.nih.gov/34756770/
  1482. Characteristics and outcomes of patients with cerebral venous sinus thrombosis in thrombotic immune thrombocytopenia induced by SARS-CoV-2 vaccine: https://jamanetwork.com/journals/jamaneurology/fullarticle/2784622
  1483. Case study of thrombosis and thrombocytopenia syndrome after administration of the AstraZeneca COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34781321/
  1484. Thrombosis with Thrombocytopenia Syndrome Associated with COVID-19 Vaccines: https://pubmed.ncbi.nlm.nih.gov/34062319/
  1485. Cerebral venous sinus thrombosis following vaccination with ChAdOx1: the first case of definite thrombosis with thrombocytopenia syndrome in India: https://pubmed.ncbi.nlm.nih.gov/34706921/
  1486. COVID-19 vaccine-associated thrombosis with thrombocytopenia syndrome (TTS): systematic review and post hoc analysis: https://pubmed.ncbi.nlm.nih.gov/34698582/.
  1487. Case report of immune thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34751013/.
  1488. Acute transverse myelitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34684047/.
  1489. Concerns for adverse effects of thrombocytopenia and thrombosis after adenovirus-vectored COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34541935/
  1490. Major hemorrhagic stroke after ChAdOx1 nCoV-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34273119/
  1491. Cerebral venous sinus thrombosis after COVID-19 vaccination: neurologic and radiologic management: https://pubmed.ncbi.nlm.nih.gov/34327553/.
  1492. Thrombocytopenia with acute ischemic stroke and hemorrhage in a patient recently vaccinated with an adenoviral vector-based COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33877737/
  1493. Intracerebral hemorrhage and thrombocytopenia after AstraZeneca COVID-19 vaccine: clinical and diagnostic challenges of vaccine-induced thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34646685/
  1494. Minimal change disease with severe acute kidney injury after Oxford-AstraZeneca COVID-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34242687/.
  1495. Case report: cerebral sinus vein thrombosis in two patients with AstraZeneca SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34609603/
  1496. Case report: Pityriasis rosea-like rash after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34557507/
  1497. Extensive longitudinal transverse myelitis after ChAdOx1 nCOV-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34641797/.
  1498. Acute eosinophilic pneumonia associated with anti-COVID-19 vaccine AZD1222: https://pubmed.ncbi.nlm.nih.gov/34812326/.
  1499. Thrombocytopenia, including immune thrombocytopenia after receiving COVID-19 mRNA vaccines reported to the Vaccine Adverse Event Reporting System (VAERS): https://pubmed.ncbi.nlm.nih.gov/34006408/
  1500. A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: victim or causality?: https://pubmed.ncbi.nlm.nih.gov/34416184/
  1501. Vaccine-induced immune thrombosis and thrombocytopenia syndrome after adenovirus-vectored severe acute respiratory syndrome coronavirus 2 vaccination: a new hypothesis on mechanisms and implications for future vaccine development: https://pubmed.ncbi.nlm.nih.gov/34664303/.
  1502. Thrombosis in peripheral artery disease and thrombotic thrombocytopenia following adenoviral COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34649281/.
  1503. Newly diagnosed immune thrombocytopenia in a pregnant patient after coronavirus disease 2019 vaccination: https://pubmed.ncbi.nlm.nih.gov/34420249/
  1504. Cerebral venous sinus thrombosis and thrombotic events after vector-based COVID-19 vaccines: systematic review and meta-analysis: https://pubmed.ncbi.nlm.nih.gov/34610990/.
  1505. Sweet’s syndrome after Oxford-AstraZeneca COVID-19 vaccine (AZD1222) in an elderly woman: https://pubmed.ncbi.nlm.nih.gov/34590397/
  1506. Sudden sensorineural hearing loss after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34670143/.
  1507. Prevalence of serious adverse events among health care professionals after receiving the first dose of ChAdOx1 nCoV-19 coronavirus vaccine (Covishield) in Togo, March 2021: https://pubmed.ncbi.nlm.nih.gov/34819146/.
  1508. Acute hemichorea-hemibalismus after COVID-19 (AZD1222) vaccination: https://pubmed.ncbi.nlm.nih.gov/34581453/
  1509. Recurrence of alopecia areata after covid-19 vaccination: a report of three cases in Italy: https://pubmed.ncbi.nlm.nih.gov/34741583/
  1510. Shingles-like skin lesion after vaccination with AstraZeneca for COVID-19: a case report: https://pubmed.ncbi.nlm.nih.gov/34631069/
  1511. Thrombosis after COVID-19 vaccination: possible link to ACE pathways: https://pubmed.ncbi.nlm.nih.gov/34479129/
  1512. Thrombocytopenia in an adolescent with sickle cell anemia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34331506/
  1513. Leukocytoclastic vasculitis as a cutaneous manifestation of ChAdOx1 corona virus vaccine nCoV-19 (recombinant): https://pubmed.ncbi.nlm.nih.gov/34546608/
  1514. Abdominal pain and bilateral adrenal hemorrhage from immune thrombotic thrombocytopenia induced by COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34546343/
  1515. Longitudinally extensive cervical myelitis after vaccination with inactivated virus based COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34849183/
  1516. Induction of cutaneous leukocytoclastic vasculitis after ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34853744/.
  1517. A case of toxic epidermal necrolysis after vaccination with ChAdOx1 nCoV-19 (AZD1222): https://pubmed.ncbi.nlm.nih.gov/34751429/.
  1518. Ocular adverse events following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34559576/
  1519. Depression after ChAdOx1-S / nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34608345/.
  1520. Venous thromboembolism and mild thrombocytopenia after ChAdOx1 nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34384129/.
  1521. Recurrent ANCA-associated vasculitis after Oxford AstraZeneca ChAdOx1-S COVID-19 vaccination: a case series of two patients: https://pubmed.ncbi.nlm.nih.gov/34755433/
  1522. Major artery thrombosis and vaccination against ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34839830/
  1523. Rare case of contralateral supraclavicular lymphadenopathy after vaccination with COVID-19: computed tomography and ultrasound findings: https://pubmed.ncbi.nlm.nih.gov/34667486/
  1524. Cutaneous lymphocytic vasculitis after administration of the second dose of AZD1222 (Oxford-AstraZeneca) Severe acute respiratory syndrome Coronavirus 2 vaccine: chance or causality: https://pubmed.ncbi.nlm.nih.gov/34726187/.
  1525. Pancreas allograft rejection after ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34781027/
  1526. Understanding the risk of thrombosis with thrombocytopenia syndrome following Ad26.COV2.S vaccination: https://pubmed.ncbi.nlm.nih.gov/34595694/
  1527. Cutaneous adverse reactions of 35,229 doses of COVID-19 Sinovac and AstraZeneca vaccine COVID-19: a prospective cohort study in health care workers: https://pubmed.ncbi.nlm.nih.gov/34661934/
  1528. Comments on thrombosis after vaccination: spike protein leader sequence could be responsible for thrombosis and antibody-mediated thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34788138
  1529. Eosinophilic dermatosis after AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34753210/.
  1530. Severe immune thrombocytopenia following COVID-19 vaccination: report of four cases and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34653943/.
  1531. Relapse of immune thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34591991/
  1532. Thrombosis in pre- and post-vaccination phase of COVID-19; https://pubmed.ncbi.nlm.nih.gov/34650382/
  1533. A look at the role of postmortem immunohistochemistry in understanding the inflammatory pathophysiology of COVID-19 disease and vaccine-related thrombotic adverse events: a narrative review: https://pubmed.ncbi.nlm.nih.gov/34769454/
  1534. COVID-19 vaccine in patients with hypercoagulability disorders: a clinical perspective: https://pubmed.ncbi.nlm.nih.gov/34786893/
  1535. Vaccine-associated thrombocytopenia and thrombosis: venous endotheliopathy leading to combined venous micro-macrothrombosis: https://pubmed.ncbi.nlm.nih.gov/34833382/
  1536. Thrombosis and thrombocytopenia syndrome causing isolated symptomatic carotid occlusion after COVID-19 Ad26.COV2.S vaccine (Janssen): https://pubmed.ncbi.nlm.nih.gov/34670287/
  1537. An unusual presentation of acute deep vein thrombosis after Modern COVID-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34790811/
  1538. Immediate high-dose intravenous immunoglobulins followed by direct treatment with thrombin inhibitors is crucial for survival in vaccine-induced immune thrombotic thrombocytopenia Sars-Covid-19-vector adenoviral VITT with venous thrombosis of the cerebral sinus and portal vein: https://pubmed.ncbi.nlm.nih.gov/34023956/.
  1539. Thrombosis formation after COVID-19 vaccination immunologic aspects: review article: https://pubmed.ncbi.nlm.nih.gov/34629931/
  1540. Imaging and hematologic findings in thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19 (AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34402666/
  1541. Spectrum of neuroimaging findings in post-CoVID-19 vaccination: a case series and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34842783/
  1542. Cerebral venous sinus thrombosis, pulmonary embolism, and thrombocytopenia after COVID-19 vaccination in a Taiwanese man: a case report and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34630307/
  1543. Fatal cerebral venous sinus thrombosis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33983464/
  1544. Autoimmune roots of thrombotic events after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34508917/.
  1545. New portal vein thrombosis in cirrhosis: is thrombophilia exacerbated by vaccine or COVID-19: https://www.jcehepatology.com/article/S0973-6883(21)00545-4/fulltext.
  1546. Images of immune thrombotic thrombocytopenia induced by Oxford / AstraZeneca® COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33962903/.
  1547. Cerebral venous sinus thrombosis after vaccination with COVID-19 mRNA of BNT162b2: https://pubmed.ncbi.nlm.nih.gov/34796065/.
  1548. Increased risk of urticaria/angioedema after BNT162b2 mRNA COVID-19 vaccination in health care workers taking ACE inhibitors: https://pubmed.ncbi.nlm.nih.gov/34579248/
  1549. A case of unusual mild clinical presentation of COVID-19 vaccine-induced immune thrombotic thrombocytopenia with splanchnic vein thrombosis: https://pubmed.ncbi.nlm.nih.gov/34843991/
  1550. Cerebral venous sinus thrombosis following vaccination with Pfizer-BioNTech COVID-19 (BNT162b2): https://pubmed.ncbi.nlm.nih.gov/34595867/
  1551. A case of idiopathic thrombocytopenic purpura after a booster dose of COVID-19 BNT162b2 vaccine (Pfizer-Biontech): https://pubmed.ncbi.nlm.nih.gov/34820240/
  1552. Vaccine-induced immune thrombotic immune thrombocytopenia (VITT): targeting pathologic mechanisms with Bruton’s tyrosine kinase inhibitors: https://pubmed.ncbi.nlm.nih.gov/33851389/
  1553. Thrombotic thrombocytopenic purpura after vaccination with Ad26.COV2-S: https://pubmed.ncbi.nlm.nih.gov/33980419/
  1554. Thromboembolic events in younger females exposed to Pfizer-BioNTech or Moderna COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34264151/
  1555. Potential risk of thrombotic events after COVID-19 vaccination with Oxford-AstraZeneca in women receiving estrogen: https://pubmed.ncbi.nlm.nih.gov/34734086/
  1556. Thrombosis after adenovirus-vectored COVID-19 vaccination: a concern for underlying disease: https://pubmed.ncbi.nlm.nih.gov/34755555/
  1557. Adenovirus interactions with platelets and coagulation and vaccine-induced immune thrombotic thrombocytopenia syndrome: https://pubmed.ncbi.nlm.nih.gov/34407607/
  1558. Thrombotic thrombocytopenic purpura: a new threat after COVID bnt162b2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34264514/.
  1559. Unusual site of deep vein thrombosis after vaccination against coronavirus mRNA-2019 coronavirus disease (COVID-19): https://pubmed.ncbi.nlm.nih.gov/34840204/
  1560. Neurological side effects of SARS-CoV-2 vaccines: https://pubmed.ncbi.nlm.nih.gov/34750810/
  1561. Coagulopathies after SARS-CoV-2 vaccination may derive from a combined effect of SARS-CoV-2 spike protein and adenovirus vector-activated signaling pathways: https://pubmed.ncbi.nlm.nih.gov/34639132/
  1562. Isolated pulmonary embolism after COVID vaccination: 2 case reports and a review of acute pulmonary embolism complications and follow-up: https://pubmed.ncbi.nlm.nih.gov/34804412/
  1563. Central retinal vein occlusion after vaccination with SARS-CoV-2 mRNA: case report: https://pubmed.ncbi.nlm.nih.gov/34571653/.
  1564. Complicated case report of long-term vaccine-induced thrombotic immune thrombocytopenia A: https://pubmed.ncbi.nlm.nih.gov/34835275/.
  1565. Deep venous thrombosis after vaccination with Ad26.COV2.S in adult males: https://pubmed.ncbi.nlm.nih.gov/34659839/.
  1566. Neurological autoimmune diseases after SARS-CoV-2 vaccination: a case series: https://pubmed.ncbi.nlm.nih.gov/34668274/.
  1567. Severe autoimmune hemolytic autoimmune anemia after receiving SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34549821/
  1568. Occurrence of COVID-19 variants among recipients of ChAdOx1 nCoV-19 vaccine (recombinant): https://pubmed.ncbi.nlm.nih.gov/34528522/
  1569. Prevalence of thrombocytopenia, anti-platelet factor 4 antibodies, and elevated D-dimer in Thais after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34568726/
  1570. Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents after co-vaccination: https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciab989/644 5179.
  1571. Myocarditis after 2019 coronavirus disease mRNA vaccine: a case series and determination of incidence rate: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab926/6420408
  1572. Myocarditis and pericarditis after COVID-19 vaccination: inequalities in age and vaccine types: https://www.mdpi.com/2075-4426/11/11/1106
  1573. Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study: https://pubmed.ncbi.nlm.nih.gov/34402230/
  1574. Shedding light on post-vaccination myocarditis and pericarditis in COVID-19 and non-COVID-19 vaccine recipients: https://pubmed.ncbi.nlm.nih.gov/34696294/
  1575. Myocarditis Following mRNA COVID-19 Vaccine: https://journals.lww.com/pec-online/Abstract/2021/11000/Myocarditis_Following_ mRNA_COVID_19_Vaccine.9.aspx.
  1576. Myocarditis following BNT162b2 mRNA Covid-19 mRNA vaccine in Israel: https://pubmed.ncbi.nlm.nih.gov/34614328/.
  1577. Myocarditis, pericarditis, and cardiomyopathy following COVID-19 vaccination: https://www.heartlungcirc.org/article/S1443-9506(21)01156-2/fulltext
  1578. Myocarditis and other cardiovascular complications of COVID-19 mRNA-based COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34277198/
  1579. Possible Association Between COVID-19 Vaccine and Myocarditis: Clinical and CMR Findings: https://pubmed.ncbi.nlm.nih.gov/34246586/
  1580. Hypersensitivity Myocarditis and COVID-19 Vaccines: https://pubmed.ncbi.nlm.nih.gov/34856634/.
  1581. Severe myocarditis associated with COVID-19 vaccine: zebra or unicorn?: https://www.internationaljournalofcardiology.com/article/S0167-5273(21)01477-7/fulltext.
  1582. Acute myocardial infarction and myocarditis after COVID-19 vaccination: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8522388/
  1583. Myocarditis after Covid-19 vaccination in a large healthcare organization: https://www.nejm.org/doi/10.1056/NEJMoa2110737
  1584. Association of myocarditis with COVID-19 messenger RNA BNT162b2 vaccine in a case series of children: https://jamanetwork.com/journals/jamacardiology/fullarticle/2783052
  1585. Clinical suspicion of myocarditis temporally related to COVID-19 vaccination in adolescents and young adults: https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.121.056583?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
  1586. STEMI mimicry: focal myocarditis in an adolescent patient after COVID-19 mRNA vaccination:. https://pubmed.ncbi.nlm.nih.gov/34756746/
  1587. Myocarditis and pericarditis in association with COVID-19 mRNA vaccination: cases from a regional pharmacovigilance center: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8587334/
  1588. Myocarditis after COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34546329/.
  1589. Patients with acute myocarditis after COVID-19 mRNA vaccination:. https://jamanetwork.com/journals/jamacardiology/fullarticle/2781602.
  1590. Myocarditis after COVID-19 vaccination: a case series: https://www.sciencedirect.com/science/article/pii/S0264410X21011725?via%3Dihub.
  1591. Myocarditis associated with COVID-19 vaccination in adolescents: https://publications.aap.org/pediatrics/article/148/5/e2021053427/181357
  1592. Myocarditis findings on cardiac magnetic resonance imaging after vaccination with COVID-19 mRNA in adolescents:. https://pubmed.ncbi.nlm.nih.gov/34704459/
  1593. Myocarditis after COVID-19 vaccination: magnetic resonance imaging study: https://academic.oup.com/ehjcimaging/advance-article/doi/10.1093/ehjci/jeab230/6 421640.
  1594. Acute myocarditis after administration of the second dose of BNT162b2 COVID-19 vaccine: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8599115/
  1595. Myocarditis after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S2352906721001603
  1596. Case report: probable myocarditis after Covid-19 mRNA vaccine in a patient with arrhythmogenic left ventricular cardiomyopathy: https://pubmed.ncbi.nlm.nih.gov/34712717/.
  1597. Acute myocarditis after administration of BNT162b2 vaccine against COVID-19: https://www.revespcardiol.org/en-linkresolver-acute-myocarditis-after-administration-bnt162b2-S188558572100133X.
  1598. Myocarditis associated with COVID-19 mRNA vaccination: https://pubs.rsna.org/doi/10.1148/radiol.2021211430
  1599. Acute myocarditis after COVID-19 vaccination: a case report: https://www.sciencedirect.com/science/article/pii/S0248866321007098
  1600. Acute myopericarditis after COVID-19 vaccination in adolescents:. https://pubmed.ncbi.nlm.nih.gov/34589238/.
  1601. Perimyocarditis in adolescents after Pfizer-BioNTech COVID-19 vaccination: https://academic.oup.com/jpids/article/10/10/962/6329543.
  1602. Acute myocarditis associated with anti-COVID-19 vaccination: https://ecevr.org/DOIx.php?id=10.7774/cevr.2021.10.2.196.
  1603. Myocarditis associated with COVID-19 vaccination: echocardiographic, cardiac CT, and MRI findings:. https://pubmed.ncbi.nlm.nih.gov/34428917/.
  1604. Acute symptomatic myocarditis in 7 adolescents after Pfizer-BioNTech COVID-19 vaccination:. https://pubmed.ncbi.nlm.nih.gov/34088762/.
  1605. Myocarditis and pericarditis in adolescents after first and second doses of COVID-19 mRNA vaccines:. https://academic.oup.com/ehjqcco/advance-article/doi/10.1093/ehjqcco/qcab090/64 42104.
  1606. COVID 19 vaccine for adolescents. Concern for myocarditis and pericarditis: https://www.mdpi.com/2036-7503/13/3/61.
  1607. Cardiac imaging of acute myocarditis after vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34402228/
  1608. Myocarditis temporally associated with COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34133885/
  1609. Acute myocardial injury after COVID-19 vaccination: a case report and review of current evidence from the vaccine adverse event reporting system database: https://pubmed.ncbi.nlm.nih.gov/34219532/
  1610. Acute myocarditis associated with COVID-19 vaccination: report of a case: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8639400/
  1611. Myocarditis following vaccination with COVID-19 messenger RNA: a Japanese case series: https://pubmed.ncbi.nlm.nih.gov/34840235/.
  1612. Myocarditis in the setting of a recent COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34712497/.
  1613. Acute myocarditis after a second dose of COVID-19 mRNA vaccine: report of two cases: https://www.clinicalimaging.org/article/S0899-7071(21)00265-5/fulltext.
  1614. Prevalence of thrombocytopenia, antiplatelet factor 4 antibodies, and elevated D-dimer in Thais after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34568726/
  1615. Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents after co-vaccination: https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciab989/6445179
  1616. Myocarditis after 2019 coronavirus disease mRNA vaccine: a case series and incidence rate determination: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab926/6420408.
  1617. Myocarditis and pericarditis after COVID-19 vaccination: inequalities in age and vaccine types: https://www.mdpi.com/2075-4426/11/11/1106
  1618. Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study: https://pubmed.ncbi.nlm.nih.gov/34402230/
  1619. Shedding light on post-vaccination myocarditis and pericarditis in COVID-19 and non-COVID-19 vaccine recipients: https://pubmed.ncbi.nlm.nih.gov/34696294/
  1620. Diffuse prothrombotic syndrome after administration of ChAdOx1 nCoV-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34615534/
  1621. Three cases of acute venous thromboembolism in women after coronavirus 2019 vaccination: https://pubmed.ncbi.nlm.nih.gov/34352418/
  1622. Clinical and biological features of cerebral venous sinus thrombosis after vaccination with ChAdOx1 nCov-19; https://jnnp.bmj.com/content/early/2021/09/29/jnnp-2021-327340.
  1623. COV2-S vaccination may reveal hereditary thrombophilia: massive cerebral venous sinus thrombosis in a young man with normal platelet count: https://pubmed.ncbi.nlm.nih.gov/34632750/
  1624. Post-mortem findings in vaccine-induced thrombotic thrombocytopenia: https://haematologica.org/article/view/haematol.2021.279075
  1625. COVID-19 vaccine-induced thrombosis: https://pubmed.ncbi.nlm.nih.gov/34802488/.
  1626. Inflammation and platelet activation after COVID-19 vaccines: possible mechanisms behind vaccine-induced immune thrombocytopenia and thrombosis: https://pubmed.ncbi.nlm.nih.gov/34887867/.
  1627. Anaphylactoid reaction and coronary thrombosis related to COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34863404/.
  1628. Vaccine-induced cerebral venous thrombosis and thrombocytopenia. Oxford-AstraZeneca COVID-19: a missed opportunity for rapid return on experience: https://www.sciencedirect.com/science/article/pii/S235255682100093X
  1629. Occurrence of splenic infarction due to arterial thrombosis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34876440/
  1630. Deep venous thrombosis more than two weeks after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33928773/
  1631. Case report: Take a second look: Cerebral venous thrombosis related to Covid-19 vaccination and thrombotic thrombocytopenia syndrome: https://pubmed.ncbi.nlm.nih.gov/34880826/
  1632. Information on ChAdOx1 nCoV-19 vaccine-induced immune-mediated thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34587242/
  1633. Change in blood viscosity after COVID-19 vaccination: estimation for persons with underlying metabolic syndrome: https://pubmed.ncbi.nlm.nih.gov/34868465/
  1634. Management of a patient with a rare congenital limb malformation syndrome after SARS-CoV-2 vaccine-induced thrombosis and thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34097311/
  1635. Bilateral thalamic stroke: a case of COVID-19 (VITT) vaccine-induced immune thrombotic thrombocytopenia or a coincidence due to underlying risk factors: https://pubmed.ncbi.nlm.nih.gov/34820232/.
  1636. Thrombocytopenia and splanchnic thrombosis after vaccination with Ad26.COV2.S successfully treated with transjugular intrahepatic intrahepatic portosystemic shunt and thrombectomy: https://onlinelibrary.wiley.com/doi/10.1002/ajh.26258
  1637. Incidence of acute ischemic stroke after coronavirus vaccination in Indonesia: case series: https://pubmed.ncbi.nlm.nih.gov/34579636/
  1638. Successful treatment of vaccine-induced immune immune thrombotic thrombocytopenia in a 26-year-old female patient: https://pubmed.ncbi.nlm.nih.gov/34614491/
  1639. Case report: vaccine-induced immune immune thrombotic thrombocytopenia in a patient with pancreatic cancer after vaccination with messenger RNA-1273: https://pubmed.ncbi.nlm.nih.gov/34790684/
  1640. Idiopathic idiopathic external jugular vein thrombophlebitis after coronavirus disease vaccination (COVID-19): https://pubmed.ncbi.nlm.nih.gov/33624509/.
  1641. Squamous cell carcinoma of the lung with hemoptysis following vaccination with tozinameran (BNT162b2, Pfizer-BioNTech): https://pubmed.ncbi.nlm.nih.gov/34612003/
  1642. Vaccine-induced thrombotic thrombocytopenia after Ad26.COV2.S vaccination in a man presenting as acute venous thromboembolism: https://pubmed.ncbi.nlm.nih.gov/34096082/
  1643. Myocarditis associated with COVID-19 vaccination in three adolescent boys: https://pubmed.ncbi.nlm.nih.gov/34851078/.
  1644. Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis after COVID-19 mRNA vaccination: a case series: https://pubmed.ncbi.nlm.nih.gov/34496880/
  1645. Perimyocarditis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34866957/
  1646. Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents after co-vaccination: https://pubmed.ncbi.nlm.nih.gov/34849657/.
  1647. Myocarditis-induced sudden death after BNT162b2 COVID-19 mRNA vaccination in Korea: case report focusing on histopathological findings: https://pubmed.ncbi.nlm.nih.gov/34664804/
  1648. Acute myocarditis after vaccination with COVID-19 mRNA in adults aged 18 years or older: https://pubmed.ncbi.nlm.nih.gov/34605853/
  1649. Recurrence of acute myocarditis temporally associated with receipt of the 2019 coronavirus mRNA disease vaccine (COVID-19) in an adolescent male: https://pubmed.ncbi.nlm.nih.gov/34166671/
  1650. Young male with myocarditis after mRNA-1273 coronavirus disease-2019 (COVID-19) mRNA vaccination: https://pubmed.ncbi.nlm.nih.gov/34744118/
  1651. Acute myocarditis after SARS-CoV-2 vaccination in a 24-year-old male: https://pubmed.ncbi.nlm.nih.gov/34334935/.
  1652. Ga-DOTATOC digital PET images of inflammatory cell infiltrates in myocarditis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34746968/
  1653. Occurrence of acute infarct-like myocarditis after vaccination with COVID-19: just an accidental coincidence or rather a vaccination-associated autoimmune myocarditis?”: https://pubmed.ncbi.nlm.nih.gov/34333695/.
  1654. Self-limited myocarditis presenting with chest pain and ST-segment elevation in adolescents after vaccination with BNT162b2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34180390/
  1655. Myocarditis Following Immunization with COVID-19 mRNA Vaccines in Members of the U.S. Military: https://pubmed.ncbi.nlm.nih.gov/34185045/
  1656. Myocarditis after BNT162b2 vaccination in a healthy male: https://pubmed.ncbi.nlm.nih.gov/34229940/
  1657. Myopericarditis in a previously healthy adolescent male after COVID-19 vaccination: Case report: https://pubmed.ncbi.nlm.nih.gov/34133825/
  1658. Acute myocarditis after SARS-CoV-2 mRNA-1273 mRNA vaccination: https://pubmed.ncbi.nlm.nih.gov/34308326/.
  1659. Chest pain with abnormal electrocardiogram redevelopment after injection of COVID-19 vaccine manufactured by Moderna: https://pubmed.ncbi.nlm.nih.gov/34866106/
  1660. Biopsy-proven lymphocytic myocarditis after first vaccination with COVID-19 mRNA in a 40-year-old man: case report: https://pubmed.ncbi.nlm.nih.gov/34487236/
  1661. Multimodality imaging and histopathology in a young man presenting with fulminant lymphocytic myocarditis and cardiogenic shock after vaccination with mRNA-1273: https://pubmed.ncbi.nlm.nih.gov/34848416/
  1662. Report of a case of myopericarditis after vaccination with BNT162b2 COVID-19 mRNA in a young Korean male: https://pubmed.ncbi.nlm.nih.gov/34636504/
  1663. Acute myocarditis after Comirnaty vaccination in a healthy male with previous SARS-CoV-2 infection: https://pubmed.ncbi.nlm.nih.gov/34367386/
  1664. Acute myocarditis in a young adult two days after vaccination with Pfizer: https://pubmed.ncbi.nlm.nih.gov/34709227/
  1665. Case report: acute fulminant myocarditis and cardiogenic shock after messenger RNA coronavirus vaccination in 2019 requiring extracorporeal cardiopulmonary resuscitation: https://pubmed.ncbi.nlm.nih.gov/34778411/
  1666. Acute myocarditis after 2019 coronavirus disease vaccination: https://pubmed.ncbi.nlm.nih.gov/34734821/
  1667. A series of patients with myocarditis after vaccination against SARS-CoV-2 with mRNA-1279 and BNT162b2: https://pubmed.ncbi.nlm.nih.gov/34246585/
  1668. Myopericarditis after Pfizer messenger ribonucleic acid coronavirus coronavirus disease vaccine in adolescents: https://pubmed.ncbi.nlm.nih.gov/34228985/
  1669. Post-vaccination multisystem inflammatory syndrome in adults without evidence of prior SARS-CoV-2 infection: https://pubmed.ncbi.nlm.nih.gov/34852213/
  1670. Acute myocarditis defined after vaccination with 2019 mRNA of coronavirus disease: https://pubmed.ncbi.nlm.nih.gov/34866122/
  1671. Biventricular systolic dysfunction in acute myocarditis after SARS-CoV-2 mRNA-1273 vaccination: https://pubmed.ncbi.nlm.nih.gov/34601566/
  1672. Myocarditis following COVID-19 vaccination: MRI study: https://pubmed.ncbi.nlm.nih.gov/34739045/.
  1673. Acute myocarditis after COVID-19 vaccination: case report: https://docs.google.com/document/d/1Hc4bh_qNbZ7UVm5BLxkRdMPnnI9zcCsl/e
  1674. Association of myocarditis with COVID-19 messenger RNA BNT162b2 vaccine COVID-19 in a case series of children: https://pubmed.ncbi.nlm.nih.gov/34374740/
  1675. Clinical suspicion of myocarditis temporally related to COVID-19 vaccination in adolescents and young adults: https://pubmed.ncbi.nlm.nih.gov/34865500/
  1676. Myocarditis following vaccination with Covid-19 in a large healthcare organization: https://pubmed.ncbi.nlm.nih.gov/34614329/
  1677. AstraZeneca COVID-19 vaccine and Guillain-Barré syndrome in Tasmania: a causal link: https://pubmed.ncbi.nlm.nih.gov/34560365/
  1678. COVID-19, Guillain-Barré and vaccineA dangerous mix: https://pubmed.ncbi.nlm.nih.gov/34108736/.
  1679. Guillain-Barré syndrome after the first dose of Pfizer-BioNTech COVID-19 vaccine: case report and review of reported cases: https://pubmed.ncbi.nlm.nih.gov/34796417/.
  1680. Guillain-Barre syndrome after BNT162b2 COVID-19 vaccine: https://link.springer.com/article/10.1007%2Fs10072-021-05523-5.
  1681. COVID-19 adenovirus vaccines and Guillain-Barré syndrome with facial palsy: https://onlinelibrary.wiley.com/doi/10.1002/ana.26258.
  1682. Association of receipt association of Ad26.COV2.S COVID-19 vaccine with presumed Guillain-Barre syndrome, February-July 2021: https://jamanetwork.com/journals/jama/fullarticle/2785009
  1683. A case of Guillain-Barré syndrome after Pfizer COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34567447/
  1684. Guillain-Barré syndrome associated with COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34648420/.
  1685. Rate of recurrent Guillain-Barré syndrome after COVID-19 BNT162b2 mRNA vaccine: https://jamanetwork.com/journals/jamaneurology/fullarticle/2783708
  1686. Guillain-Barre syndrome after COVID-19 vaccination in an adolescent: https://www.pedneur.com/article/S0887-8994(21)00221-6/fulltext.
  1687. Guillain-Barre syndrome after ChAdOx1-S / nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34114256/.
  1688. Guillain-Barre syndrome after COVID-19 mRNA-1273 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34767184/.
  1689. Guillain-Barre syndrome following SARS-CoV-2 vaccination in 19 patients: https://pubmed.ncbi.nlm.nih.gov/34644738/.
  1690. Guillain-Barre syndrome presenting with facial diplegia following vaccination with COVID-19 in two patients: https://pubmed.ncbi.nlm.nih.gov/34649856/
  1691. A rare case of Guillain-Barré syndrome after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34671572/
  1692. Neurological complications of COVID-19: Guillain-Barre syndrome after Pfizer COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33758714/
  1693. COVID-19 vaccine causing Guillain-Barre syndrome, an uncommon potential side effect: https://pubmed.ncbi.nlm.nih.gov/34484780/
  1694. Guillain-Barre syndrome after the first dose of COVID-19 vaccination: case report; https://pubmed.ncbi.nlm.nih.gov/34779385/.
  1695. Miller Fisher syndrome after Pfizer COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34817727/.
  1696. Miller Fisher syndrome after 2019 BNT162b2 mRNA coronavirus vaccination: https://pubmed.ncbi.nlm.nih.gov/34789193/.
  1697. Bilateral facial weakness with a variant of paresthesia of Guillain-Barre syndrome after Vaxzevria COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34261746/
  1698. Guillain-Barre syndrome after the first injection of ChAdOx1 nCoV-19 vaccine: first report: https://pubmed.ncbi.nlm.nih.gov/34217513/.
  1699. A case of sensory ataxic Guillain-Barre syndrome with immunoglobulin G anti-GM1 antibodies after first dose of COVID-19 BNT162b2 mRNA vaccine (Pfizer): https://pubmed.ncbi.nlm.nih.gov/34871447/
  1700. Reporting of acute inflammatory neuropathies with COVID-19 vaccines: subgroup disproportionality analysis in VigiBase: https://pubmed.ncbi.nlm.nih.gov/34579259/
  1701. A variant of Guillain-Barré syndrome after SARS-CoV-2 vaccination: AMSAN: https://pubmed.ncbi.nlm.nih.gov/34370408/.
  1702. A rare variant of Guillain-Barré syndrome after vaccination with Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34703690/.
  1703. Guillain-Barré syndrome after SARS-CoV-2 vaccination in a patient with previous vaccine-associated Guillain-Barré syndrome: https://pubmed.ncbi.nlm.nih.gov/34810163/
  1704. Guillain-Barré syndrome in an Australian state using mRNA and adenovirus-vector SARS-CoV-2 vaccines: https://onlinelibrary.wiley.com/doi/10.1002/ana.26218.
  1705. Acute transverse myelitis after SARS-CoV-2 vaccination: case report and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34482455/.
  1706. Variant Guillain-Barré syndrome occurring after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34114269/.
  1707. Guillian-Barre syndrome with axonal variant temporally associated with Modern SARS-CoV-2 mRNA-based vaccine: https://pubmed.ncbi.nlm.nih.gov/34722067/
  1708. Guillain-Barre syndrome after the first dose of SARS-CoV-2 vaccine: a temporary occurrence, not a causal association: https://pubmed.ncbi.nlm.nih.gov/33968610/
  1709. SARS-CoV-2 vaccines can be complicated not only by Guillain-Barré syndrome but also by distal small fiber neuropathy: https://pubmed.ncbi.nlm.nih.gov/34525410/
  1710. Clinical variant of Guillain-Barré syndrome with prominent facial diplegia after AstraZeneca 2019 coronavirus disease vaccine: https://pubmed.ncbi.nlm.nih.gov/34808658/
  1711. Adverse event reporting and risk of Bell’s palsy after COVID-19 vaccination: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00646-0/fulltext.
  1712. Bilateral facial nerve palsy and COVID-19 vaccination: causality or coincidence: https://pubmed.ncbi.nlm.nih.gov/34522557/
  1713. Left Bell’s palsy after the first dose of mRNA-1273 SARS-CoV-2 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34763263/.
  1714. Bell’s palsy after inactivated vaccination with COVID-19 in a patient with a history of recurrent Bell’s palsy: case report: https://pubmed.ncbi.nlm.nih.gov/34621891/
  1715. Neurological complications after the first dose of COVID-19 vaccines and SARS-CoV-2 infection: https://pubmed.ncbi.nlm.nih.gov/34697502/
  1716. Type I interferons as a potential mechanism linking COVID-19 mRNA vaccines with Bell’s palsy: https://pubmed.ncbi.nlm.nih.gov/33858693/
  1717. Acute transverse myelitis following inactivated COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34370410/
  1718. Acute transverse myelitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34579245/.
  1719. A case of longitudinally extensive transverse myelitis following Covid-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34182207/
  1720. Post COVID-19 transverse myelitis; a case report with review of the literature: https://pubmed.ncbi.nlm.nih.gov/34457267/.
  1721. Beware of neuromyelitis optica spectrum disorder after vaccination with inactivated virus for COVID-19: https://pubmed.ncbi.nlm.nih.gov/34189662/
  1722. Neuromyelitis optica in a healthy woman after vaccination against severe acute respiratory syndrome coronavirus 2 mRNA-1273: https://pubmed.ncbi.nlm.nih.gov/34660149/
  1723. Acute bilateral bilateral optic neuritis/chiasm with longitudinal extensive transverse myelitis in long-standing stable multiple sclerosis after vector-based vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34131771/
  1724. A case series of acute pericarditis after vaccination with COVID-19 in the context of recent reports from Europe and the United States: https://pubmed.ncbi.nlm.nih.gov/34635376/
  1725. Acute pericarditis and cardiac tamponade after vaccination with Covid-19: https://pubmed.ncbi.nlm.nih.gov/34749492/
  1726. Myocarditis and pericarditis in adolescents after the first and second doses of COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34849667/
  1727. Perimyocarditis in adolescents after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34319393/
  1728. Acute myopericarditis after COVID-19 vaccine in adolescents: https://pubmed.ncbi.nlm.nih.gov/34589238/
  1729. Pericarditis after administration of the BNT162b2 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34149145/
  1730. Case report: symptomatic pericarditis post COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34693198/.
  1731. An outbreak of Still’s disease after COVID-19 vaccination in a 34-year-old patient: https://pubmed.ncbi.nlm.nih.gov/34797392/
  1732. Hemophagocytic lymphohistiocytosis following COVID-19 vaccination (ChAdOx1 nCoV-19): https://pubmed.ncbi.nlm.nih.gov/34862234/
  1733. Myocarditis after SARS-CoV-2 mRNA vaccination, a case series: https://pubmed.ncbi.nlm.nih.gov/34396358/.
  1734. Miller-Fisher syndrome and Guillain-Barré syndrome overlap syndrome in a patient after Oxford-AstraZeneca SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34848426/.
  1735. Immune-mediated disease outbreaks or new-onset disease in 27 subjects after mRNA/DNA vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/33946748/
  1736. Post-mortem investigation of deaths after vaccination with COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34591186/
  1737. Acute kidney injury with macroscopic hematuria and IgA nephropathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34352309/
  1738. Relapse of immune thrombocytopenia after covid-19 vaccination in young male patient: https://pubmed.ncbi.nlm.nih.gov/34804803/.
  1739. Immune thrombocytopenic purpura associated with COVID-19 mRNA vaccine Pfizer-BioNTech BNT16B2b2: https://pubmed.ncbi.nlm.nih.gov/34077572/
  1740. Retinal hemorrhage after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34884407/.
  1741. Case report: anti-neutrophil cytoplasmic antibody-associated vasculitis with acute renal failure and pulmonary hemorrhage can occur after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34859017/
  1742. Intracerebral hemorrhage due to vasculitis following COVID-19 vaccination: case report: https://pubmed.ncbi.nlm.nih.gov/34783899/
  1743. Peduncular, symptomatic cavernous bleeding after immune thrombocytopenia-induced SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34549178/.
  1744. Brain death in a vaccinated patient with COVID-19 infection: https://pubmed.ncbi.nlm.nih.gov/34656887/
  1745. Generalized purpura annularis telangiectodes after SARS-CoV-2 mRNA vaccination: https://pubmed.ncbi.nlm.nih.gov/34236717/.
  1746. Lobar hemorrhage with ventricular rupture shortly after the first dose of a SARS-CoV-2 mRNA-based SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34729467/.
  1747. A case of outbreak of macroscopic hematuria and IgA nephropathy after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33932458/
  1748. Acral hemorrhage after administration of the second dose of SARS-CoV-2 vaccine. A post-vaccination reaction: https://pubmed.ncbi.nlm.nih.gov/34092400/742.
  1749. Severe immune thrombocytopenic purpura after SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34754937/
  1750. Gross hematuria after severe acute respiratory syndrome coronavirus 2 vaccination in 2 patients with IgA nephropathy: https://pubmed.ncbi.nlm.nih.gov/33771584/
  1751. Autoimmune encephalitis after ChAdOx1-S SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34846583/
  1752. COVID-19 vaccine and death: causality algorithm according to the WHO eligibility diagnosis: https://pubmed.ncbi.nlm.nih.gov/34073536/
  1753. Bell’s palsy after vaccination with mRNA (BNT162b2) and inactivated (CoronaVac) SARS-CoV-2 vaccines: a case series and a nested case-control study: https://pubmed.ncbi.nlm.nih.gov/34411532/
  1754. Epidemiology of myocarditis and pericarditis following mRNA vaccines in Ontario, Canada: by vaccine product, schedule, and interval: https://www.medrxiv.org/content/10.1101/2021.12.02.21267156v1
  1755. Anaphylaxis following Covid-19 vaccine in a patient with cholinergic urticaria: https://pubmed.ncbi.nlm.nih.gov/33851711/
  1756. Anaphylaxis induced by CoronaVac COVID-19 vaccine: clinical features and results of revaccination: https://pubmed.ncbi.nlm.nih.gov/34675550/.
  1757. Anaphylaxis after Modern COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34734159/.
  1758. Association of self-reported history of high-risk allergy with allergy symptoms after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34698847/
  1759. Sex differences in the incidence of anaphylaxis to LNP-mRNA vaccines COVID-19: https://pubmed.ncbi.nlm.nih.gov/34020815/
  1760. Allergic reactions, including anaphylaxis, after receiving the first dose of Pfizer-BioNTech COVID-19 vaccine – United States, December 14 to 23, 2020: https://pubmed.ncbi.nlm.nih.gov/33641264/
  1761. Allergic reactions, including anaphylaxis, after receiving the first dose of Modern COVID-19 vaccine – United States, December 21, 2020 to January 10, 2021: https://pubmed.ncbi.nlm.nih.gov/33641268/
  1762. Prolonged anaphylaxis to Pfizer 2019 coronavirus disease vaccine: a case report and mechanism of action: https://pubmed.ncbi.nlm.nih.gov/33834172/
  1763. Anaphylaxis reactions to Pfizer BNT162b2 vaccine: report of 3 cases of anaphylaxis following vaccination with Pfizer BNT162b2: https://pubmed.ncbi.nlm.nih.gov/34579211/
  1764. Biphasic anaphylaxis after first dose of 2019 messenger RNA coronavirus disease vaccine with positive polysorbate 80 skin test result: https://pubmed.ncbi.nlm.nih.gov/34343674/
  1765. Acute myocardial infarction and myocarditis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34586408/
  1766. Takotsubo syndrome after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34539938/.
  1767. Takotsubo cardiomyopathy after coronavirus 2019 vaccination in patient on maintenance hemodialysis: https://pubmed.ncbi.nlm.nih.gov/34731486/.
  1768. Premature myocardial infarction or side effect of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33824804/
  1769. Myocardial infarction, stroke, and pulmonary embolism after BNT162b2 mRNA COVID-19 vaccine in persons aged 75 years or older: https://pubmed.ncbi.nlm.nih.gov/34807248/
  1770. Kounis syndrome type 1 induced by inactivated SARS-COV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34148772/
  1771. Acute myocardial infarction within 24 hours after COVID-19 vaccination: is Kounis syndrome the culprit: https://pubmed.ncbi.nlm.nih.gov/34702550/
  1772. Deaths associated with the recently launched SARS-CoV-2 vaccination (Comirnaty®): https://pubmed.ncbi.nlm.nih.gov/33895650/
  1773. Deaths associated with recently launched SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34425384/
  1774. A case of acute encephalopathy and non-ST-segment elevation myocardial infarction after vaccination with mRNA-1273: possible adverse effect: https://pubmed.ncbi.nlm.nih.gov/34703815/
  1775. COVID-19 vaccine-induced urticarial vasculitis: https://pubmed.ncbi.nlm.nih.gov/34369046/.
  1776. ANCA-associated vasculitis after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34280507/.
  1777. New-onset leukocytoclastic vasculitis after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34241833/
  1778. Cutaneous small vessel vasculitis after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34529877/.
  1779. Outbreak of leukocytoclastic vasculitis after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33928638/
  1780. Leukocytoclastic vasculitis after exposure to COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34836739/
  1781. Vasculitis and bursitis in [ 18 F] FDG-PET/CT after COVID-19 mRNA vaccine: post hoc ergo propter hoc?; https://pubmed.ncbi.nlm.nih.gov/34495381/.
  1782. Cutaneous lymphocytic vasculitis after administration of COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34327795
  1783. Cutaneous leukocytoclastic vasculitis induced by Sinovac COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34660867/.
  1784. Case report: ANCA-associated vasculitis presenting with rhabdomyolysis and crescentic Pauci-Inmune glomerulonephritis after vaccination with Pfizer-BioNTech COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34659268/
  1785. Reactivation of IgA vasculitis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34848431/
  1786. Varicella-zoster virus-related small-vessel vasculitis after Pfizer-BioNTech COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34310759/.
  1787. Imaging in vascular medicine: leukocytoclastic vasculitis after COVID-19 vaccine booster: https://pubmed.ncbi.nlm.nih.gov/34720009/
  1788. A rare case of Henoch-Schönlein purpura after a case report of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34518812/
  1789. Cutaneous vasculitis following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34611627/.
  1790. Possible case of COVID-19 mRNA vaccine-induced small-vessel vasculitis: https://pubmed.ncbi.nlm.nih.gov/34705320/.
  1791. IgA vasculitis following COVID-19 vaccination in an adult: https://pubmed.ncbi.nlm.nih.gov/34779011/
  1792. Propylthiouracil-induced anti-neutrophil cytoplasmic antibody-associated vasculitis following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34451967/
  1793. Coronavirus disease vaccine 2019 (COVID-19) in systemic lupus erythematosus and neutrophil anti-cytoplasmic antibody-associated vasculitis: https://pubmed.ncbi.nlm.nih.gov/33928459/
  1794. Reactivation of IgA vasculitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34250509/
  1795. Clinical and histopathologic spectrum of delayed adverse skin reactions after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34292611/.
  1796. First description of immune complex vasculitis after COVID-19 vaccination with BNT162b2: case report: https://pubmed.ncbi.nlm.nih.gov/34530771/.
  1797. Nephrotic syndrome and vasculitis after SARS-CoV-2 vaccine: true association or circumstantial: https://pubmed.ncbi.nlm.nih.gov/34245294/.
  1798. Occurrence of de novo cutaneous vasculitis after vaccination against coronavirus disease (COVID-19): https://pubmed.ncbi.nlm.nih.gov/34599716/.
  1799. Asymmetric cutaneous vasculitis after COVID-19 vaccination with unusual preponderance of eosinophils: https://pubmed.ncbi.nlm.nih.gov/34115904/.
  1800. Henoch-Schönlein purpura occurring after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34247902/.
  1801. Henoch-Schönlein purpura following the first dose of COVID-19 viral vector vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34696186/.
  1802. Granulomatous vasculitis after AstraZeneca anti-SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34237323/.
  1803. Acute retinal necrosis due to varicella zoster virus reactivation after vaccination with BNT162b2 COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34851795/.
  1804. A case of generalized Sweet’s syndrome with vasculitis triggered by recent vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34849386/
  1805. Small-vessel vasculitis following Oxford-AstraZeneca vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34310763/
  1806. Relapse of microscopic polyangiitis after COVID-19 vaccination: case report: https://pubmed.ncbi.nlm.nih.gov/34251683/.
  1807. Cutaneous vasculitis after severe acute respiratory syndrome coronavirus 2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34557622/.
  1808. Recurrent herpes zoster after COVID-19 vaccination in patients with chronic urticaria on cyclosporine treatment – A report of 3 cases: https://pubmed.ncbi.nlm.nih.gov/34510694/
  1809. Leukocytoclastic vasculitis after coronavirus disease vaccination 2019: https://pubmed.ncbi.nlm.nih.gov/34713472/803
  1810. Outbreaks of mixed cryoglobulinemia vasculitis after vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34819272/
  1811. Cutaneous small-vessel vasculitis after vaccination with a single dose of Janssen Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34337124/
  1812. Case of immunoglobulin A vasculitis after vaccination against coronavirus disease 2019: https://pubmed.ncbi.nlm.nih.gov/34535924/
  1813. Rapid progression of angioimmunoblastic T-cell lymphoma after BNT162b2 mRNA booster vaccination: case report: https://www.frontiersin.org/articles/10.3389/fmed.2021.798095/
  1814. COVID-19 mRNA vaccination-induced lymphadenopathy mimics lymphoma progression on FDG PET / CT: https://pubmed.ncbi.nlm.nih.gov/33591026/
  1815. Lymphadenopathy in COVID-19 vaccine recipients: diagnostic dilemma in oncology patients: https://pubmed.ncbi.nlm.nih.gov/33625300/
  1816. Hypermetabolic lymphadenopathy after administration of BNT162b2 mRNA vaccine Covid-19: incidence assessed by [ 18 F] FDG PET-CT and relevance for study interpretation: https://pubmed.ncbi.nlm.nih.gov/33774684/
  1817. Lymphadenopathy after COVID-19 vaccination: review of imaging findings: https://pubmed.ncbi.nlm.nih.gov/33985872/
  1818. Evolution of bilateral hypermetabolic axillary hypermetabolic lymphadenopathy on FDG PET/CT after 2-dose COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34735411/
  1819. Lymphadenopathy associated with COVID-19 vaccination on FDG PET/CT: distinguishing features in adenovirus-vectored vaccine: https://pubmed.ncbi.nlm.nih.gov/34115709/.
  1820. COVID-19 vaccination-induced lymphadenopathy in a specialized breast imaging clinic in Israel: analysis of 163 cases: https://pubmed.ncbi.nlm.nih.gov/34257025/.
  1821. COVID-19 vaccine-related axillary lymphadenopathy in breast cancer patients: case series with literature review: https://pubmed.ncbi.nlm.nih.gov/34836672/.
  1822. Coronavirus disease vaccine 2019 mimics lymph node metastases in patients undergoing skin cancer follow-up: a single-center study: https://pubmed.ncbi.nlm.nih.gov/34280870/
  1823. COVID-19 post-vaccination lymphadenopathy: report of fine-needle aspiration biopsy cytologic findings: https://pubmed.ncbi.nlm.nih.gov/34432391/
  1824. Regional lymphadenopathy after COVID-19 vaccination: review of the literature and considerations for patient management in breast cancer care: https://pubmed.ncbi.nlm.nih.gov/34731748/
  1825. Subclinical axillary lymphadenopathy associated with COVID-19 vaccination on screening mammography: https://pubmed.ncbi.nlm.nih.gov/34906409/
  1826. Adverse events of COVID injection that may occur in children.Acute-onset supraclavicular lymphadenopathy coincident with intramuscular mRNA vaccination against COVID-19 may be related to the injection technique of the vaccine, Spain, January and February 2021: https://pubmed.ncbi.nlm.nih.gov/33706861/
  1827. Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up by ultrasonography: https://pubmed.ncbi.nlm.nih.gov/34116295/
  1828. Oxford-AstraZeneca COVID-19 vaccination induced lymphadenopathy on [18F] choline PET / CT, not just an FDG finding: https://pubmed.ncbi.nlm.nih.gov/33661328/
  1829. Biphasic anaphylaxis after exposure to the first dose of Pfizer-BioNTech COVID-19 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34050949/
  1830. Axillary adenopathy associated with COVID-19 vaccination: imaging findings and follow-up recommendations in 23 women: https://pubmed.ncbi.nlm.nih.gov/33624520/
  1831. A case of cervical lymphadenopathy following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34141500/
  1832. Unique imaging findings of neurologic phantosmia after Pfizer-BioNtech COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34096896/
  1833. Thrombotic adverse events reported for Moderna, Pfizer, and Oxford-AstraZeneca COVID-19 vaccines: comparison of occurrence and clinical outcomes in the EudraVigilance database: https://pubmed.ncbi.nlm.nih.gov/34835256/
  1834. Unilateral lymphadenopathy after COVID-19 vaccination: a practical management plan for radiologists of all specialties: https://pubmed.ncbi.nlm.nih.gov/33713605/
  1835. Unilateral axillary adenopathy in the setting of COVID-19 vaccination: follow-up: https://pubmed.ncbi.nlm.nih.gov/34298342/
  1836. A systematic review of cases of CNS demyelination following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34839149/
  1837. Supraclavicular lymphadenopathy after COVID-19 vaccination: an increasing presentation in the two-week wait neck lump clinic: https://pubmed.ncbi.nlm.nih.gov/33685772/
  1838. COVID-19 vaccine-related axillary and cervical lymphadenopathy in patients with current or previous breast cancer and other malignancies: cross-sectional imaging findings on MRI, CT and PET-CT: https://pubmed.ncbi.nlm.nih.gov/34719892/
  1839. Adenopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625299/.
  1840. Incidence of axillary adenopathy on breast imaging after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34292295/.
  1841. COVID-19 vaccination and lower cervical lymphadenopathy in two-week neck lump clinic: a follow-up audit: https://pubmed.ncbi.nlm.nih.gov/33947605/.
  1842. Cervical lymphadenopathy after coronavirus disease vaccination 2019: clinical features and implications for head and neck cancer services: https://pubmed.ncbi.nlm.nih.gov/34526175/
  1843. Lymphadenopathy associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33786231/
  1844. Evolution of lymphadenopathy on PET/MRI after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625301/.
  1845. Autoimmune hepatitis triggered by SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34332438/.
  1846. New-onset nephrotic syndrome after Janssen COVID-19 vaccination: case report and literature review: https://pubmed.ncbi.nlm.nih.gov/34342187/.
  1847. Massive cervical lymphadenopathy following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34601889/
  1848. ANCA glomerulonephritis following Modern COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34081948/
  1849. Extensive longitudinal transverse myelitis following AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34507942/.
  1850. Systemic capillary extravasation syndrome after vaccination with ChAdOx1 nCOV-19 (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34362727/
  1851. Unilateral axillary lymphadenopathy related to COVID-19 vaccine: pattern on screening breast MRI allowing benign evaluation: https://pubmed.ncbi.nlm.nih.gov/34325221/
  1852. Axillary lymphadenopathy in patients with recent Covid-19 vaccination: a new diagnostic dilemma: https://pubmed.ncbi.nlm.nih.gov/34825530/.
  1853. Minimal change disease and acute kidney injury after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34000278/
  1854. COVID-19 vaccine-induced unilateral axillary adenopathy: follow-up evaluation in the USA: https://pubmed.ncbi.nlm.nih.gov/34655312/.
  1855. Gastroparesis after Pfizer-BioNTech COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34187985/.
  1856. Acute-onset supraclavicular lymphadenopathy coincident with intramuscular mRNA vaccination against COVID-19 may be related to the injection technique of the vaccine, Spain, January and February 2021: https://pubmed.ncbi.nlm.nih.gov/33706861/
  1857. Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up by ultrasonography: https://pubmed.ncbi.nlm.nih.gov/34116295/
  1858. Oxford-AstraZeneca COVID-19 vaccination induced lymphadenopathy on [18F] choline PET / CT, not just an FDG finding: https://pubmed.ncbi.nlm.nih.gov/33661328/
  1859. Biphasic anaphylaxis after exposure to the first dose of Pfizer-BioNTech COVID-19 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34050949/
  1860. Axillary adenopathy associated with COVID-19 vaccination: imaging findings and follow-up recommendations in 23 women: https://pubmed.ncbi.nlm.nih.gov/33624520/
  1861. A case of cervical lymphadenopathy following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34141500/
  1862. Unique imaging findings of neurologic phantosmia after Pfizer-BioNtech COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34096896/
  1863. Thrombotic adverse events reported for Moderna, Pfizer, and Oxford-AstraZeneca COVID-19 vaccines: comparison of occurrence and clinical outcomes in the EudraVigilance database: https://pubmed.ncbi.nlm.nih.gov/34835256/
  1864. Unilateral lymphadenopathy after COVID-19 vaccination: a practical management plan for radiologists of all specialties: https://pubmed.ncbi.nlm.nih.gov/33713605/
  1865. Unilateral axillary adenopathy in the setting of COVID-19 vaccination: follow-up: https://pubmed.ncbi.nlm.nih.gov/34298342/
  1866. A systematic review of cases of CNS demyelination following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34839149/
  1867. Supraclavicular lymphadenopathy after COVID-19 vaccination: an increasing presentation in the two-week wait neck lump clinic: https://pubmed.ncbi.nlm.nih.gov/33685772/
  1868. COVID-19 vaccine-related axillary and cervical lymphadenopathy in patients with current or previous breast cancer and other malignancies: cross-sectional imaging findings on MRI, CT and PET-CT: https://pubmed.ncbi.nlm.nih.gov/34719892/
  1869. Adenopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625299/.
  1870. Incidence of axillary adenopathy on breast imaging after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34292295/.
  1871. COVID-19 vaccination and lower cervical lymphadenopathy in two-week neck lump clinic: a follow-up audit: https://pubmed.ncbi.nlm.nih.gov/33947605/.
  1872. Cervical lymphadenopathy after coronavirus disease vaccination 2019: clinical features and implications for head and neck cancer services: https://pubmed.ncbi.nlm.nih.gov/34526175/
  1873. Lymphadenopathy associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33786231/
  1874. Evolution of lymphadenopathy on PET/MRI after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625301/.
  1875. Autoimmune hepatitis triggered by SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34332438/.
  1876. New-onset nephrotic syndrome after Janssen COVID-19 vaccination: case report and literature review: https://pubmed.ncbi.nlm.nih.gov/34342187/.
  1877. Massive cervical lymphadenopathy following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34601889/
  1878. ANCA glomerulonephritis following Modern COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34081948/
  1879. Extensive longitudinal transverse myelitis following AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34507942/.
  1880. Systemic capillary extravasation syndrome after vaccination with ChAdOx1 nCOV-19 (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34362727/
  1881. Unilateral axillary lymphadenopathy related to COVID-19 vaccine: pattern on screening breast MRI allowing benign evaluation: https://pubmed.ncbi.nlm.nih.gov/34325221/
  1882. Axillary lymphadenopathy in patients with recent Covid-19 vaccination: a new diagnostic dilemma: https://pubmed.ncbi.nlm.nih.gov/34825530/.
  1883. Minimal change disease and acute kidney injury after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34000278/
  1884. COVID-19 vaccine-induced unilateral axillary adenopathy: follow-up evaluation in the USA: https://pubmed.ncbi.nlm.nih.gov/34655312/.
  1885. Gastroparesis after Pfizer-BioNTech COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34187985/.
  1886. Abbate, A., Gavin, J., Madanchi, N., Kim, C., Shah, P. R., Klein, K., . . . Danielides, S. (2021). Fulminant myocarditis and systemic hyperinflammation temporally associated with BNT162b2 mRNA COVID-19 vaccination in two patients. Int J Cardiol, 340, 119-121. doi:10.1016/j.ijcard.2021.08.018. https://www.ncbi.nlm.nih.gov/pubmed/34416319
  1887. Abu Mouch, S., Roguin, A., Hellou, E., Ishai, A., Shoshan, U., Mahamid, L., . . . Berar Yanay, N. (2021). Myocarditis following COVID-19 mRNA vaccination. Vaccine, 39(29), 3790-3793. doi:10.1016/j.vaccine.2021.05.087. https://www.ncbi.nlm.nih.gov/pubmed/34092429
  1888. Albert, E., Aurigemma, G., Saucedo, J., & Gerson, D. S. (2021). Myocarditis following COVID-19 vaccination. Radiol Case Rep, 16(8), 2142-2145. doi:10.1016/j.radcr.2021.05.033. https://www.ncbi.nlm.nih.gov/pubmed/34025885
  1889. Aye, Y. N., Mai, A. S., Zhang, A., Lim, O. Z. H., Lin, N., Ng, C. H., . . . Chew, N. W. S. (2021). Acute Myocardial Infarction and Myocarditis following COVID-19 Vaccination. QJM. doi:10.1093/qjmed/hcab252. https://www.ncbi.nlm.nih.gov/pubmed/34586408
  1890. Azir, M., Inman, B., Webb, J., & Tannenbaum, L. (2021). STEMI Mimic: Focal Myocarditis in an Adolescent Patient After mRNA COVID-19 Vaccine. J Emerg Med, 61(6), e129-e132. doi:10.1016/j.jemermed.2021.09.017. https://www.ncbi.nlm.nih.gov/pubmed/34756746
  1891. Barda, N., Dagan, N., Ben-Shlomo, Y., Kepten, E., Waxman, J., Ohana, R., . . . Balicer, R. D. (2021). Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Engl J Med, 385(12), 1078-1090. doi:10.1056/NEJMoa2110475. https://www.ncbi.nlm.nih.gov/pubmed/34432976
  1892. Bhandari, M., Pradhan, A., Vishwakarma, P., & Sethi, R. (2021). Coronavirus and cardiovascular manifestations- getting to the heart of the matter. World J Cardiol, 13(10), 556-565. doi:10.4330/wjc.v13.i10.556. https://www.ncbi.nlm.nih.gov/pubmed/34754400
  1893. Bozkurt, B., Kamat, I., & Hotez, P. J. (2021). Myocarditis With COVID-19 mRNA Vaccines. Circulation, 144(6), 471-484. doi:10.1161/CIRCULATIONAHA.121.056135. https://www.ncbi.nlm.nih.gov/pubmed/34281357
  1894. Buchhorn, R., Meyer, C., Schulze-Forster, K., Junker, J., & Heidecke, H. (2021). Autoantibody Release in Children after Corona Virus mRNA Vaccination: A Risk Factor of Multisystem Inflammatory Syndrome? Vaccines (Basel), 9(11). doi:10.3390/vaccines9111353. https://www.ncbi.nlm.nih.gov/pubmed/34835284
  1895. Calcaterra, G., Bassareo, P. P., Barilla, F., Romeo, F., & Mehta, J. L. (2022). Concerning the unexpected prothrombotic state following some coronavirus disease 2019 vaccines. J Cardiovasc Med (Hagerstown), 23(2), 71-74. doi:10.2459/JCM.0000000000001232. https://www.ncbi.nlm.nih.gov/pubmed/34366403
  1896. Calcaterra, G., Mehta, J. L., de Gregorio, C., Butera, G., Neroni, P., Fanos, V., & Bassareo, P. P. (2021). COVID 19 Vaccine for Adolescents. Concern about Myocarditis and Pericarditis. Pediatr Rep, 13(3), 530-533. doi:10.3390/pediatric13030061. https://www.ncbi.nlm.nih.gov/pubmed/34564344
  1897. Chai, Q., Nygaard, U., Schmidt, R. C., Zaremba, T., Moller, A. M., & Thorvig, C. M. (2022). Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-BioNTech COVID-19 vaccine. Acta Paediatr, 111(1), 125-127. doi:10.1111/apa.16141. https://www.ncbi.nlm.nih.gov/pubmed/34617315
  1898. Chamling, B., Vehof, V., Drakos, S., Weil, M., Stalling, P., Vahlhaus, C., . . . Yilmaz, A. (2021). Occurrence of acute infarct-like myocarditis following COVID-19 vaccination: just an accidental co-incidence or rather vaccination-associated autoimmune myocarditis? Clin Res Cardiol, 110(11), 1850-1854. doi:10.1007/s00392-021-01916-w. https://www.ncbi.nlm.nih.gov/pubmed/34333695
  1899. Chang, J. C., & Hawley, H. B. (2021). Vaccine-Associated Thrombocytopenia and Thrombosis: Venous Endotheliopathy Leading to Venous Combined Micro-Macrothrombosis. Medicina (Kaunas), 57(11). doi:10.3390/medicina57111163. https://www.ncbi.nlm.nih.gov/pubmed/34833382
  1900. Chelala, L., Jeudy, J., Hossain, R., Rosenthal, G., Pietris, N., & White, C. (2021). Cardiac MRI Findings of Myocarditis After COVID-19 mRNA Vaccination in Adolescents. AJR Am J Roentgenol. doi:10.2214/AJR.21.26853. https://www.ncbi.nlm.nih.gov/pubmed/34704459
  1901. Choi, S., Lee, S., Seo, J. W., Kim, M. J., Jeon, Y. H., Park, J. H., . . . Yeo, N. S. (2021). Myocarditis-induced Sudden Death after BNT162b2 mRNA COVID-19 Vaccination in Korea: Case Report Focusing on Histopathological Findings. J Korean Med Sci, 36(40), e286. doi:10.3346/jkms.2021.36.e286. https://www.ncbi.nlm.nih.gov/pubmed/34664804
  1902. Chouchana, L., Blet, A., Al-Khalaf, M., Kafil, T. S., Nair, G., Robblee, J., . . . Liu, P. P. (2021). Features of Inflammatory Heart Reactions Following mRNA COVID-19 Vaccination at a Global Level. Clin Pharmacol Ther. doi:10.1002/cpt.2499. https://www.ncbi.nlm.nih.gov/pubmed/34860360
  1903. Chua, G. T., Kwan, M. Y. W., Chui, C. S. L., Smith, R. D., Cheung, E. C., Tian, T., . . . Ip, P. (2021). Epidemiology of Acute Myocarditis/Pericarditis in Hong Kong Adolescents Following Comirnaty Vaccination. Clin Infect Dis. doi:10.1093/cid/ciab989. https://www.ncbi.nlm.nih.gov/pubmed/34849657
  1904. Clarke, R., & Ioannou, A. (2021). Should T2 mapping be used in cases of recurrent myocarditis to differentiate between the acute inflammation and chronic scar? J Pediatr. doi:10.1016/j.jpeds.2021.12.026. https://www.ncbi.nlm.nih.gov/pubmed/34933012
  1905. Colaneri, M., De Filippo, M., Licari, A., Marseglia, A., Maiocchi, L., Ricciardi, A., . . . Bruno, R. (2021). COVID vaccination and asthma exacerbation: might there be a link? Int J Infect Dis, 112, 243-246. doi:10.1016/j.ijid.2021.09.026. https://www.ncbi.nlm.nih.gov/pubmed/34547487
  1906. Das, B. B., Kohli, U., Ramachandran, P., Nguyen, H. H., Greil, G., Hussain, T., . . . Khan, D. (2021). Myopericarditis after messenger RNA Coronavirus Disease 2019 Vaccination in Adolescents 12 to 18 Years of Age. J Pediatr, 238, 26-32 e21. doi:10.1016/j.jpeds.2021.07.044. https://www.ncbi.nlm.nih.gov/pubmed/34339728
  1907. Das, B. B., Moskowitz, W. B., Taylor, M. B., & Palmer, A. (2021). Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination: What Do We Know So Far? Children (Basel), 8(7). doi:10.3390/children8070607. https://www.ncbi.nlm.nih.gov/pubmed/34356586
  1908. Deb, A., Abdelmalek, J., Iwuji, K., & Nugent, K. (2021). Acute Myocardial Injury Following COVID-19 Vaccination: A Case Report and Review of Current Evidence from Vaccine Adverse Events Reporting System Database. J Prim Care Community Health, 12, 21501327211029230. doi:10.1177/21501327211029230. https://www.ncbi.nlm.nih.gov/pubmed/34219532
  1909. Dickey, J. B., Albert, E., Badr, M., Laraja, K. M., Sena, L. M., Gerson, D. S., . . . Aurigemma, G. P. (2021). A Series of Patients With Myocarditis Following SARS-CoV-2 Vaccination With mRNA-1279 and BNT162b2. JACC Cardiovasc Imaging, 14(9), 1862-1863. doi:10.1016/j.jcmg.2021.06.003. https://www.ncbi.nlm.nih.gov/pubmed/34246585
  1910. Dimopoulou, D., Spyridis, N., Vartzelis, G., Tsolia, M. N., & Maritsi, D. N. (2021). Safety and tolerability of the COVID-19 mRNA-vaccine in adolescents with juvenile idiopathic arthritis on treatment with TNF-inhibitors. Arthritis Rheumatol. doi:10.1002/art.41977. https://www.ncbi.nlm.nih.gov/pubmed/34492161
  1911. Dimopoulou, D., Vartzelis, G., Dasoula, F., Tsolia, M., & Maritsi, D. (2021). Immunogenicity of the COVID-19 mRNA vaccine in adolescents with juvenile idiopathic arthritis on treatment with TNF inhibitors. Ann Rheum Dis. doi:10.1136/annrheumdis-2021-221607. https://www.ncbi.nlm.nih.gov/pubmed/34844930
  1912. Ehrlich, P., Klingel, K., Ohlmann-Knafo, S., Huttinger, S., Sood, N., Pickuth, D., & Kindermann, M. (2021). Biopsy-proven lymphocytic myocarditis following first mRNA COVID-19 vaccination in a 40-year-old male: case report. Clin Res Cardiol, 110(11), 1855-1859. doi:10.1007/s00392-021-01936-6. https://www.ncbi.nlm.nih.gov/pubmed/34487236
  1913. El Sahly, H. M., Baden, L. R., Essink, B., Doblecki-Lewis, S., Martin, J. M., Anderson, E. J., . . . Group, C. S. (2021). Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N Engl J Med, 385(19), 1774-1785. doi:10.1056/NEJMoa2113017. https://www.ncbi.nlm.nih.gov/pubmed/34551225
  1914. Facetti, S., Giraldi, M., Vecchi, A. L., Rogiani, S., & Nassiacos, D. (2021). [Acute myocarditis in a young adult two days after Pfizer vaccination]. G Ital Cardiol (Rome), 22(11), 891-893. doi:10.1714/3689.36746. https://www.ncbi.nlm.nih.gov/pubmed/34709227
  1915. Fazlollahi, A., Zahmatyar, M., Noori, M., Nejadghaderi, S. A., Sullman, M. J. M., Shekarriz-Foumani, R., . . . Safiri, S. (2021). Cardiac complications following mRNA COVID-19 vaccines: A systematic review of case reports and case series. Rev Med Virol, e2318. doi:10.1002/rmv.2318. https://www.ncbi.nlm.nih.gov/pubmed/34921468
  1916. Fazolo, T., Lima, K., Fontoura, J. C., de Souza, P. O., Hilario, G., Zorzetto, R., . . . Bonorino, C. (2021). Pediatric COVID-19 patients in South Brazil show abundant viral mRNA and strong specific anti-viral responses. Nat Commun, 12(1), 6844. doi:10.1038/s41467-021-27120-y. https://www.ncbi.nlm.nih.gov/pubmed/34824230
  1917. Fikenzer, S., & Laufs, U. (2021). Correction to: Response to Letter to the editors referring to Fikenzer, S., Uhe, T., Lavall, D., Rudolph, U., Falz, R., Busse, M., Hepp, P., & Laufs, U. (2020). Effects of surgical and FFP2/N95 face masks on cardiopulmonary exercise capacity. Clinical research in cardiology: official journal of the German Cardiac Society, 1-9. Advance online publication. https://doi.org/10.1007/s00392-020-01704-y. Clin Res Cardiol, 110(8), 1352. doi:10.1007/s00392-021-01896-x. https://www.ncbi.nlm.nih.gov/pubmed/34170372
  1918. Foltran, D., Delmas, C., Flumian, C., De Paoli, P., Salvo, F., Gautier, S., . . . Montastruc, F. (2021). Myocarditis and Pericarditis in Adolescents after First and Second doses of mRNA COVID-19 Vaccines. Eur Heart J Qual Care Clin Outcomes. doi:10.1093/ehjqcco/qcab090. https://www.ncbi.nlm.nih.gov/pubmed/34849667
  1919. Forgacs, D., Jang, H., Abreu, R. B., Hanley, H. B., Gattiker, J. L., Jefferson, A. M., & Ross, T. M. (2021). SARS-CoV-2 mRNA Vaccines Elicit Different Responses in Immunologically Naive and Pre-Immune Humans. Front Immunol, 12, 728021. doi:10.3389/fimmu.2021.728021. https://www.ncbi.nlm.nih.gov/pubmed/34646267
  1920. Furer, V., Eviatar, T., Zisman, D., Peleg, H., Paran, D., Levartovsky, D., . . . Elkayam, O. (2021). Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. Ann Rheum Dis, 80(10), 1330-1338. doi:10.1136/annrheumdis-2021-220647. https://www.ncbi.nlm.nih.gov/pubmed/34127481
  1921. Galindo, R., Chow, H., & Rongkavilit, C. (2021). COVID-19 in Children: Clinical Manifestations and Pharmacologic Interventions Including Vaccine Trials. Pediatr Clin North Am, 68(5), 961-976. doi:10.1016/j.pcl.2021.05.004. https://www.ncbi.nlm.nih.gov/pubmed/34538306
  1922. Gargano, J. W., Wallace, M., Hadler, S. C., Langley, G., Su, J. R., Oster, M. E., . . . Oliver, S. E. (2021). Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices – United States, June 2021. MMWR Morb Mortal Wkly Rep, 70(27), 977-982. doi:10.15585/mmwr.mm7027e2. https://www.ncbi.nlm.nih.gov/pubmed/34237049
  1923. Gatti, M., Raschi, E., Moretti, U., Ardizzoni, A., Poluzzi, E., & Diemberger, I. (2021). Influenza Vaccination and Myo-Pericarditis in Patients Receiving Immune Checkpoint Inhibitors: Investigating the Likelihood of Interaction through the Vaccine Adverse Event Reporting System and VigiBase. Vaccines (Basel), 9(1). doi:10.3390/vaccines9010019. https://www.ncbi.nlm.nih.gov/pubmed/33406694
  1924. Gautam, N., Saluja, P., Fudim, M., Jambhekar, K., Pandey, T., & Al’Aref, S. (2021). A Late Presentation of COVID-19 Vaccine-Induced Myocarditis. Cureus, 13(9), e17890. doi:10.7759/cureus.17890. https://www.ncbi.nlm.nih.gov/pubmed/34660088
  1925. Gellad, W. F. (2021). Myocarditis after vaccination against covid-19. BMJ, 375, n3090. doi:10.1136/bmj.n3090. https://www.ncbi.nlm.nih.gov/pubmed/34916217
  1926. Greenhawt, M., Abrams, E. M., Shaker, M., Chu, D. K., Khan, D., Akin, C., . . . Golden, D. B. K. (2021). The Risk of Allergic Reaction to SARS-CoV-2 Vaccines and Recommended Evaluation and Management: A Systematic Review, Meta-Analysis, GRADE Assessment, and International Consensus Approach. J Allergy Clin Immunol Pract, 9(10), 3546-3567. doi:10.1016/j.jaip.2021.06.006. https://www.ncbi.nlm.nih.gov/pubmed/34153517
  1927. Haaf, P., Kuster, G. M., Mueller, C., Berger, C. T., Monney, P., Burger, P., . . . Tanner, F. C. (2021). The very low risk of myocarditis and pericarditis after mRNA COVID-19 vaccination should not discourage vaccination. Swiss Med Wkly, 151, w30087. doi:10.4414/smw.2021.w30087. https://www.ncbi.nlm.nih.gov/pubmed/34668687
  1928. Hasnie, A. A., Hasnie, U. A., Patel, N., Aziz, M. U., Xie, M., Lloyd, S. G., & Prabhu, S. D. (2021). Perimyocarditis following first dose of the mRNA-1273 SARS-CoV-2 (Moderna) vaccine in a healthy young male: a case report. BMC Cardiovasc Disord, 21(1), 375. doi:10.1186/s12872-021-02183-3. https://www.ncbi.nlm.nih.gov/pubmed/34348657
  1929. Hause, A. M., Gee, J., Baggs, J., Abara, W. E., Marquez, P., Thompson, D., . . . Shay, D. K. (2021). COVID-19 Vaccine Safety in Adolescents Aged 12-17 Years – United States, December 14, 2020-July 16, 2021. MMWR Morb Mortal Wkly Rep, 70(31), 1053-1058. doi:10.15585/mmwr.mm7031e1. https://www.ncbi.nlm.nih.gov/pubmed/34351881
  1930. Helms, J. M., Ansteatt, K. T., Roberts, J. C., Kamatam, S., Foong, K. S., Labayog, J. S., & Tarantino, M. D. (2021). Severe, Refractory Immune Thrombocytopenia Occurring After SARS-CoV-2 Vaccine. J Blood Med, 12, 221-224. doi:10.2147/JBM.S307047. https://www.ncbi.nlm.nih.gov/pubmed/33854395
  1931. Hippisley-Cox, J., Patone, M., Mei, X. W., Saatci, D., Dixon, S., Khunti, K., . . . Coupland, C. A. C. (2021). Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study. BMJ, 374, n1931. doi:10.1136/bmj.n1931. https://www.ncbi.nlm.nih.gov/pubmed/34446426
  1932. Ho, J. S., Sia, C. H., Ngiam, J. N., Loh, P. H., Chew, N. W., Kong, W. K., & Poh, K. K. (2021). A review of COVID-19 vaccination and the reported cardiac manifestations. Singapore Med J. doi:10.11622/smedj.2021210. https://www.ncbi.nlm.nih.gov/pubmed/34808708
  1933. Iguchi, T., Umeda, H., Kojima, M., Kanno, Y., Tanaka, Y., Kinoshita, N., & Sato, D. (2021). Cumulative Adverse Event Reporting of Anaphylaxis After mRNA COVID-19 Vaccine (Pfizer-BioNTech) Injections in Japan: The First-Month Report. Drug Saf, 44(11), 1209-1214. doi:10.1007/s40264-021-01104-9. https://www.ncbi.nlm.nih.gov/pubmed/34347278
  1934. In brief: Myocarditis with the Pfizer/BioNTech and Moderna COVID-19 vaccines. (2021). Med Lett Drugs Ther, 63(1629), e9. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34544112https://www.ncbi.nlm.nih.gov/pubmed/3454412
  1935. Ioannou, A. (2021a). Myocarditis should be considered in those with a troponin rise and unobstructed coronary arteries following Pfizer-BioNTech COVID-19 vaccination. QJM. doi:10.1093/qjmed/hcab231. https://www.ncbi.nlm.nih.gov/pubmed/34463755
  1936. Ioannou, A. (2021b). T2 mapping should be utilised in cases of suspected myocarditis to confirm an acute inflammatory process. QJM. doi:10.1093/qjmed/hcab326. https://www.ncbi.nlm.nih.gov/pubmed/34931681
  1937. Isaak, A., Feisst, A., & Luetkens, J. A. (2021). Myocarditis Following COVID-19 Vaccination. Radiology, 301(1), E378-E379. doi:10.1148/radiol.2021211766. https://www.ncbi.nlm.nih.gov/pubmed/34342500
  1938. Istampoulouoglou, I., Dimitriou, G., Spani, S., Christ, A., Zimmermanns, B., Koechlin, S., . . . Leuppi-Taegtmeyer, A. B. (2021). Myocarditis and pericarditis in association with COVID-19 mRNA-vaccination: cases from a regional pharmacovigilance centre. Glob Cardiol Sci Pract, 2021(3), e202118. doi:10.21542/gcsp.2021.18. https://www.ncbi.nlm.nih.gov/pubmed/34805376
  1939. Jaafar, R., Boschi, C., Aherfi, S., Bancod, A., Le Bideau, M., Edouard, S., . . . La Scola, B. (2021). High Individual Heterogeneity of Neutralizing Activities against the Original Strain and Nine Different Variants of SARS-CoV-2. Viruses, 13(11). doi:10.3390/v13112177. https://www.ncbi.nlm.nih.gov/pubmed/34834983
  1940. Jain, S. S., Steele, J. M., Fonseca, B., Huang, S., Shah, S., Maskatia, S. A., . . . Grosse-Wortmann, L. (2021). COVID-19 Vaccination-Associated Myocarditis in Adolescents. Pediatrics, 148(5). doi:10.1542/peds.2021-053427. https://www.ncbi.nlm.nih.gov/pubmed/34389692
  1941. Jhaveri, R., Adler-Shohet, F. C., Blyth, C. C., Chiotos, K., Gerber, J. S., Green, M., . . . Zaoutis, T. (2021). Weighing the Risks of Perimyocarditis With the Benefits of SARS-CoV-2 mRNA Vaccination in Adolescents. J Pediatric Infect Dis Soc, 10(10), 937-939. doi:10.1093/jpids/piab061. https://www.ncbi.nlm.nih.gov/pubmed/34270752
  1942. Kaneta, K., Yokoi, K., Jojima, K., Kotooka, N., & Node, K. (2021). Young Male With Myocarditis Following mRNA-1273 Vaccination Against Coronavirus Disease-2019 (COVID-19). Circ J. doi:10.1253/circj.CJ-21-0818. https://www.ncbi.nlm.nih.gov/pubmed/34744118
  1943. Kaul, R., Sreenivasan, J., Goel, A., Malik, A., Bandyopadhyay, D., Jin, C., . . . Panza, J. A. (2021). Myocarditis following COVID-19 vaccination. Int J Cardiol Heart Vasc, 36, 100872. doi:10.1016/j.ijcha.2021.100872. https://www.ncbi.nlm.nih.gov/pubmed/34568540
  1944. Khogali, F., & Abdelrahman, R. (2021). Unusual Presentation of Acute Perimyocarditis Following SARS-COV-2 mRNA-1237 Moderna Vaccination. Cureus, 13(7), e16590. doi:10.7759/cureus.16590. https://www.ncbi.nlm.nih.gov/pubmed/34447639
  1945. Kim, H. W., Jenista, E. R., Wendell, D. C., Azevedo, C. F., Campbell, M. J., Darty, S. N., . . . Kim, R. J. (2021). Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. JAMA Cardiol, 6(10), 1196-1201. doi:10.1001/jamacardio.2021.2828. https://www.ncbi.nlm.nih.gov/pubmed/34185046
  1946. Kim, I. C., Kim, H., Lee, H. J., Kim, J. Y., & Kim, J. Y. (2021). Cardiac Imaging of Acute Myocarditis Following COVID-19 mRNA Vaccination. J Korean Med Sci, 36(32), e229. doi:10.3346/jkms.2021.36.e229. https://www.ncbi.nlm.nih.gov/pubmed/34402228
  1947. King, W. W., Petersen, M. R., Matar, R. M., Budweg, J. B., Cuervo Pardo, L., & Petersen, J. W. (2021). Myocarditis following mRNA vaccination against SARS-CoV-2, a case series. Am Heart J Plus, 8, 100042. doi:10.1016/j.ahjo.2021.100042. https://www.ncbi.nlm.nih.gov/pubmed/34396358
  1948. Klein, N. P., Lewis, N., Goddard, K., Fireman, B., Zerbo, O., Hanson, K. E., . . . Weintraub, E. S. (2021). Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA, 326(14), 1390-1399. doi:10.1001/jama.2021.15072. https://www.ncbi.nlm.nih.gov/pubmed/34477808
  1949. Klimek, L., Bergmann, K. C., Brehler, R., Pfutzner, W., Zuberbier, T., Hartmann, K., . . . Worm, M. (2021). Practical handling of allergic reactions to COVID-19 vaccines: A position paper from German and Austrian Allergy Societies AeDA, DGAKI, GPA and OGAI. Allergo J Int, 1-17. doi:10.1007/s40629-021-00165-7. https://www.ncbi.nlm.nih.gov/pubmed/33898162
  1950. Klimek, L., Novak, N., Hamelmann, E., Werfel, T., Wagenmann, M., Taube, C., . . . Worm, M. (2021). Severe allergic reactions after COVID-19 vaccination with the Pfizer/BioNTech vaccine in Great Britain and USA: Position statement of the German Allergy Societies: Medical Association of German Allergologists (AeDA), German Society for Allergology and Clinical Immunology (DGAKI) and Society for Pediatric Allergology and Environmental Medicine (GPA). Allergo J Int, 30(2), 51-55. doi:10.1007/s40629-020-00160-4. https://www.ncbi.nlm.nih.gov/pubmed/33643776
  1951. Kohli, U., Desai, L., Chowdhury, D., Harahsheh, A. S., Yonts, A. B., Ansong, A., . . . Ang, J. Y. (2021). mRNA Coronavirus-19 Vaccine-Associated Myopericarditis in Adolescents: A Survey Study. J Pediatr. doi:10.1016/j.jpeds.2021.12.025. https://www.ncbi.nlm.nih.gov/pubmed/34952008
  1952. Kostoff, R. N., Calina, D., Kanduc, D., Briggs, M. B., Vlachoyiannopoulos, P., Svistunov, A. A., & Tsatsakis, A. (2021a). Erratum to “Why are we vaccinating children against COVID-19?” [Toxicol. Rep. 8C (2021) 1665-1684 / 1193]. Toxicol Rep, 8, 1981. doi:10.1016/j.toxrep.2021.10.003. https://www.ncbi.nlm.nih.gov/pubmed/34642628
  1953. Kostoff, R. N., Calina, D., Kanduc, D., Briggs, M. B., Vlachoyiannopoulos, P., Svistunov, A. A., & Tsatsakis, A. (2021b). Why are we vaccinating children against COVID-19? Toxicol Rep, 8, 1665-1684. doi:10.1016/j.toxrep.2021.08.010. https://www.ncbi.nlm.nih.gov/pubmed/34540594
  1954. Kremsner, P. G., Mann, P., Kroidl, A., Leroux-Roels, I., Schindler, C., Gabor, J. J., . . . Group, C.-N.-S. (2021). Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2 : A phase 1 randomized clinical trial. Wien Klin Wochenschr, 133(17-18), 931-941. doi:10.1007/s00508-021-01922-y. https://www.ncbi.nlm.nih.gov/pubmed/34378087
  1955. Kustin, T., Harel, N., Finkel, U., Perchik, S., Harari, S., Tahor, M., . . . Stern, A. (2021). Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med, 27(8), 1379-1384. doi:10.1038/s41591-021-01413-7. https://www.ncbi.nlm.nih.gov/pubmed/34127854
  1956. Kwan, M. Y. W., Chua, G. T., Chow, C. B., Tsao, S. S. L., To, K. K. W., Yuen, K. Y., . . . Ip, P. (2021). mRNA COVID vaccine and myocarditis in adolescents. Hong Kong Med J, 27(5), 326-327. doi:10.12809/hkmj215120. https://www.ncbi.nlm.nih.gov/pubmed/34393110
  1957. Lee, E., Chew, N. W. S., Ng, P., & Yeo, T. J. (2021). Reply to “Letter to the editor: Myocarditis should be considered in those with a troponin rise and unobstructed coronary arteries following PfizerBioNTech COVID-19 vaccination”. QJM. doi:10.1093/qjmed/hcab232. https://www.ncbi.nlm.nih.gov/pubmed/34463770
  1958. Lee, E. J., Cines, D. B., Gernsheimer, T., Kessler, C., Michel, M., Tarantino, M. D., . . . Bussel, J. B. (2021). Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am J Hematol, 96(5), 534-537. doi:10.1002/ajh.26132. https://www.ncbi.nlm.nih.gov/pubmed/33606296
  1959. Levin, D., Shimon, G., Fadlon-Derai, M., Gershovitz, L., Shovali, A., Sebbag, A., . . . Gordon, B. (2021). Myocarditis following COVID-19 vaccination – A case series. Vaccine, 39(42), 6195-6200. doi:10.1016/j.vaccine.2021.09.004. https://www.ncbi.nlm.nih.gov/pubmed/34535317
  1960. Li, J., Hui, A., Zhang, X., Yang, Y., Tang, R., Ye, H., . . . Zhu, F. (2021). Safety and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in younger and older Chinese adults: a randomized, placebo-controlled, double-blind phase 1 study. Nat Med, 27(6), 1062-1070. doi:10.1038/s41591-021-01330-9. https://www.ncbi.nlm.nih.gov/pubmed/33888900
  1961. Li, M., Yuan, J., Lv, G., Brown, J., Jiang, X., & Lu, Z. K. (2021). Myocarditis and Pericarditis following COVID-19 Vaccination: Inequalities in Age and Vaccine Types. J Pers Med, 11(11). doi:10.3390/jpm11111106. https://www.ncbi.nlm.nih.gov/pubmed/34834458
  1962. Lim, Y., Kim, M. C., Kim, K. H., Jeong, I. S., Cho, Y. S., Choi, Y. D., & Lee, J. E. (2021). Case Report: Acute Fulminant Myocarditis and Cardiogenic Shock After Messenger RNA Coronavirus Disease 2019 Vaccination Requiring Extracorporeal Cardiopulmonary Resuscitation. Front Cardiovasc Med, 8, 758996. doi:10.3389/fcvm.2021.758996. https://www.ncbi.nlm.nih.gov/pubmed/34778411
  1963. Long, S. S. (2021). Important Insights into Myopericarditis after the Pfizer mRNA COVID-19 Vaccination in Adolescents. J Pediatr, 238, 5. doi:10.1016/j.jpeds.2021.07.057. https://www.ncbi.nlm.nih.gov/pubmed/34332972
  1964. Luk, A., Clarke, B., Dahdah, N., Ducharme, A., Krahn, A., McCrindle, B., . . . McDonald, M. (2021). Myocarditis and Pericarditis After COVID-19 mRNA Vaccination: Practical Considerations for Care Providers. Can J Cardiol, 37(10), 1629-1634. doi:10.1016/j.cjca.2021.08.001. https://www.ncbi.nlm.nih.gov/pubmed/34375696
  1965. Madelon, N., Lauper, K., Breville, G., Sabater Royo, I., Goldstein, R., Andrey, D. O., . . . Eberhardt, C. S. (2021). Robust T cell responses in anti-CD20 treated patients following COVID-19 vaccination: a prospective cohort study. Clin Infect Dis. doi:10.1093/cid/ciab954. https://www.ncbi.nlm.nih.gov/pubmed/34791081
  1966. Mangat, C., & Milosavljevic, N. (2021). BNT162b2 Vaccination during Pregnancy Protects Both the Mother and Infant: Anti-SARS-CoV-2 S Antibodies Persistently Positive in an Infant at 6 Months of Age. Case Rep Pediatr, 2021, 6901131. doi:10.1155/2021/6901131. https://www.ncbi.nlm.nih.gov/pubmed/34676123
  1967. Mark, C., Gupta, S., Punnett, A., Upton, J., Orkin, J., Atkinson, A., . . . Alexander, S. (2021). Safety of administration of BNT162b2 mRNA (Pfizer-BioNTech) COVID-19 vaccine in youths and young adults with a history of acute lymphoblastic leukemia and allergy to PEG-asparaginase. Pediatr Blood Cancer, 68(11), e29295. doi:10.1002/pbc.29295. https://www.ncbi.nlm.nih.gov/pubmed/34398511
  1968. Martins-Filho, P. R., Quintans-Junior, L. J., de Souza Araujo, A. A., Sposato, K. B., Souza Tavares, C. S., Gurgel, R. Q., . . . Santos, V. S. (2021). Socio-economic inequalities and COVID-19 incidence and mortality in Brazilian children: a nationwide register-based study. Public Health, 190, 4-6. doi:10.1016/j.puhe.2020.11.005. https://www.ncbi.nlm.nih.gov/pubmed/33316478
  1969. McLean, K., & Johnson, T. J. (2021). Myopericarditis in a previously healthy adolescent male following COVID-19 vaccination: A case report. Acad Emerg Med, 28(8), 918-921. doi:10.1111/acem.14322. https://www.ncbi.nlm.nih.gov/pubmed/34133825
  1970. Mevorach, D., Anis, E., Cedar, N., Bromberg, M., Haas, E. J., Nadir, E., . . . Alroy-Preis, S. (2021). Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. N Engl J Med, 385(23), 2140-2149. doi:10.1056/NEJMoa2109730. https://www.ncbi.nlm.nih.gov/pubmed/34614328
  1971. Minocha, P. K., Better, D., Singh, R. K., & Hoque, T. (2021). Recurrence of Acute Myocarditis Temporally Associated with Receipt of the mRNA Coronavirus Disease 2019 (COVID-19) Vaccine in a Male Adolescent. J Pediatr, 238, 321-323. doi:10.1016/j.jpeds.2021.06.035. https://www.ncbi.nlm.nih.gov/pubmed/34166671
  1972. Mizrahi, B., Lotan, R., Kalkstein, N., Peretz, A., Perez, G., Ben-Tov, A., . . . Patalon, T. (2021). Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. Nat Commun, 12(1), 6379. doi:10.1038/s41467-021-26672-3. https://www.ncbi.nlm.nih.gov/pubmed/34737312
  1973. Moffitt, K., Cheung, E., Yeung, T., Stamoulis, C., & Malley, R. (2021). Analysis of Staphylococcus aureus Transcriptome in Pediatric Soft Tissue Abscesses and Comparison to Murine Infections. Infect Immun, 89(4). doi:10.1128/IAI.00715-20. https://www.ncbi.nlm.nih.gov/pubmed/33526560
  1974. Mohamed, L., Madsen, A. M. R., Schaltz-Buchholzer, F., Ostenfeld, A., Netea, M. G., Benn, C. S., & Kofoed, P. E. (2021). Reactivation of BCG vaccination scars after vaccination with mRNA-Covid-vaccines: two case reports. BMC Infect Dis, 21(1), 1264. doi:10.1186/s12879-021-06949-0. https://www.ncbi.nlm.nih.gov/pubmed/34930152
  1975. Montgomery, J., Ryan, M., Engler, R., Hoffman, D., McClenathan, B., Collins, L., . . . Cooper, L. T., Jr. (2021). Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol, 6(10), 1202-1206. doi:10.1001/jamacardio.2021.2833. https://www.ncbi.nlm.nih.gov/pubmed/34185045
  1976. Murakami, Y., Shinohara, M., Oka, Y., Wada, R., Noike, R., Ohara, H., . . . Ikeda, T. (2021). Myocarditis Following a COVID-19 Messenger RNA Vaccination: A Japanese Case Series. Intern Med. doi:10.2169/internalmedicine.8731-21. https://www.ncbi.nlm.nih.gov/pubmed/34840235
  1977. Nagasaka, T., Koitabashi, N., Ishibashi, Y., Aihara, K., Takama, N., Ohyama, Y., . . . Kaneko, Y. (2021). Acute Myocarditis Associated with COVID-19 Vaccination: A Case Report. J Cardiol Cases. doi:10.1016/j.jccase.2021.11.006. https://www.ncbi.nlm.nih.gov/pubmed/34876937
  1978. Ntouros, P. A., Vlachogiannis, N. I., Pappa, M., Nezos, A., Mavragani, C. P., Tektonidou, M. G., . . . Sfikakis, P. P. (2021). Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus. Clin Immunol, 229, 108765. doi:10.1016/j.clim.2021.108765. https://www.ncbi.nlm.nih.gov/pubmed/34089859
  1979. Nygaard, U., Holm, M., Bohnstedt, C., Chai, Q., Schmidt, L. S., Hartling, U. B., . . . Stensballe, L. G. (2022). Population-based Incidence of Myopericarditis After COVID-19 Vaccination in Danish Adolescents. Pediatr Infect Dis J, 41(1), e25-e28. doi:10.1097/INF.0000000000003389. https://www.ncbi.nlm.nih.gov/pubmed/34889875
  1980. Oberhardt, V., Luxenburger, H., Kemming, J., Schulien, I., Ciminski, K., Giese, S., . . . Hofmann, M. (2021). Rapid and stable mobilization of CD8(+) T cells by SARS-CoV-2 mRNA vaccine. Nature, 597(7875), 268-273. doi:10.1038/s41586-021-03841-4. https://www.ncbi.nlm.nih.gov/pubmed/34320609
  1981. Park, H., Yun, K. W., Kim, K. R., Song, S. H., Ahn, B., Kim, D. R., . . . Kim, Y. J. (2021). Epidemiology and Clinical Features of Myocarditis/Pericarditis before the Introduction of mRNA COVID-19 Vaccine in Korean Children: a Multicenter Study. J Korean Med Sci, 36(32), e232. doi:10.3346/jkms.2021.36.e232. https://www.ncbi.nlm.nih.gov/pubmed/34402230
  1982. Park, J., Brekke, D. R., & Bratincsak, A. (2021). Self-limited myocarditis presenting with chest pain and ST segment elevation in adolescents after vaccination with the BNT162b2 mRNA vaccine. Cardiol Young, 1-4. doi:10.1017/S1047951121002547. https://www.ncbi.nlm.nih.gov/pubmed/34180390
  1983. Patel, Y. R., Louis, D. W., Atalay, M., Agarwal, S., & Shah, N. R. (2021). Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis following mRNA COVID-19 vaccination: a case series. J Cardiovasc Magn Reson, 23(1), 101. doi:10.1186/s12968-021-00795-4. https://www.ncbi.nlm.nih.gov/pubmed/34496880
  1984. Patone, M., Mei, X. W., Handunnetthi, L., Dixon, S., Zaccardi, F., Shankar-Hari, M., . . . Hippisley-Cox, J. (2021). Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med. doi:10.1038/s41591-021-01630-0. https://www.ncbi.nlm.nih.gov/pubmed/34907393
  1985. Patrignani, A., Schicchi, N., Calcagnoli, F., Falchetti, E., Ciampani, N., Argalia, G., & Mariani, A. (2021). Acute myocarditis following Comirnaty vaccination in a healthy man with previous SARS-CoV-2 infection. Radiol Case Rep, 16(11), 3321-3325. doi:10.1016/j.radcr.2021.07.082. https://www.ncbi.nlm.nih.gov/pubmed/34367386
  1986. Perez, Y., Levy, E. R., Joshi, A. Y., Virk, A., Rodriguez-Porcel, M., Johnson, M., . . . Swift, M. D. (2021). Myocarditis Following COVID-19 mRNA Vaccine: A Case Series and Incidence Rate Determination. Clin Infect Dis. doi:10.1093/cid/ciab926. https://www.ncbi.nlm.nih.gov/pubmed/34734240
  1987. Perrotta, A., Biondi-Zoccai, G., Saade, W., Miraldi, F., Morelli, A., Marullo, A. G., . . . Peruzzi, M. (2021). A snapshot global survey on side effects of COVID-19 vaccines among healthcare professionals and armed forces with a focus on headache. Panminerva Med, 63(3), 324-331. doi:10.23736/S0031-0808.21.04435-9. https://www.ncbi.nlm.nih.gov/pubmed/34738774
  1988. Pinana, J. L., Lopez-Corral, L., Martino, R., Montoro, J., Vazquez, L., Perez, A., . . . Cell Therapy, G. (2022). SARS-CoV-2-reactive antibody detection after SARS-CoV-2 vaccination in hematopoietic stem cell transplant recipients: Prospective survey from the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group. Am J Hematol, 97(1), 30-42. doi:10.1002/ajh.26385. https://www.ncbi.nlm.nih.gov/pubmed/34695229
  1989. Revon-Riviere, G., Ninove, L., Min, V., Rome, A., Coze, C., Verschuur, A., . . . Andre, N. (2021). The BNT162b2 mRNA COVID-19 vaccine in adolescents and young adults with cancer: A monocentric experience. Eur J Cancer, 154, 30-34. doi:10.1016/j.ejca.2021.06.002. https://www.ncbi.nlm.nih.gov/pubmed/34233234
  1990. Sanchez Tijmes, F., Thavendiranathan, P., Udell, J. A., Seidman, M. A., & Hanneman, K. (2021). Cardiac MRI Assessment of Nonischemic Myocardial Inflammation: State of the Art Review and Update on Myocarditis Associated with COVID-19 Vaccination. Radiol Cardiothorac Imaging, 3(6), e210252. doi:10.1148/ryct.210252. https://www.ncbi.nlm.nih.gov/pubmed/34934954
  1991. Schauer, J., Buddhe, S., Colyer, J., Sagiv, E., Law, Y., Mallenahalli Chikkabyrappa, S., & Portman, M. A. (2021). Myopericarditis After the Pfizer Messenger Ribonucleic Acid Coronavirus Disease Vaccine in Adolescents. J Pediatr, 238, 317-320. doi:10.1016/j.jpeds.2021.06.083. https://www.ncbi.nlm.nih.gov/pubmed/34228985
  1992. Schneider, J., Sottmann, L., Greinacher, A., Hagen, M., Kasper, H. U., Kuhnen, C., . . . Schmeling, A. (2021). Postmortem investigation of fatalities following vaccination with COVID-19 vaccines. Int J Legal Med, 135(6), 2335-2345. doi:10.1007/s00414-021-02706-9. https://www.ncbi.nlm.nih.gov/pubmed/34591186
  1993. Schramm, R., Costard-Jackle, A., Rivinius, R., Fischer, B., Muller, B., Boeken, U., . . . Gummert, J. (2021). Poor humoral and T-cell response to two-dose SARS-CoV-2 messenger RNA vaccine BNT162b2 in cardiothoracic transplant recipients. Clin Res Cardiol, 110(8), 1142-1149. doi:10.1007/s00392-021-01880-5. https://www.ncbi.nlm.nih.gov/pubmed/34241676
  1994. Sessa, F., Salerno, M., Esposito, M., Di Nunno, N., Zamboni, P., & Pomara, C. (2021). Autopsy Findings and Causality Relationship between Death and COVID-19 Vaccination: A Systematic Review. J Clin Med, 10(24). doi:10.3390/jcm10245876. https://www.ncbi.nlm.nih.gov/pubmed/34945172
  1995. Sharif, N., Alzahrani, K. J., Ahmed, S. N., & Dey, S. K. (2021). Efficacy, Immunogenicity and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Front Immunol, 12, 714170. doi:10.3389/fimmu.2021.714170. https://www.ncbi.nlm.nih.gov/pubmed/34707602
  1996. Shay, D. K., Gee, J., Su, J. R., Myers, T. R., Marquez, P., Liu, R., . . . Shimabukuro, T. T. (2021). Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine – United States, March-April 2021. MMWR Morb Mortal Wkly Rep, 70(18), 680-684. doi:10.15585/mmwr.mm7018e2. https://www.ncbi.nlm.nih.gov/pubmed/33956784
  1997. Shazley, O., & Alshazley, M. (2021). A COVID-Positive 52-Year-Old Man Presented With Venous Thromboembolism and Disseminated Intravascular Coagulation Following Johnson & Johnson Vaccination: A Case-Study. Cureus, 13(7), e16383. doi:10.7759/cureus.16383. https://www.ncbi.nlm.nih.gov/pubmed/34408937
  1998. Shiyovich, A., Witberg, G., Aviv, Y., Eisen, A., Orvin, K., Wiessman, M., . . . Hamdan, A. (2021). Myocarditis following COVID-19 vaccination: magnetic resonance imaging study. Eur Heart J Cardiovasc Imaging. doi:10.1093/ehjci/jeab230. https://www.ncbi.nlm.nih.gov/pubmed/34739045
  1999. Simone, A., Herald, J., Chen, A., Gulati, N., Shen, A. Y., Lewin, B., & Lee, M. S. (2021). Acute Myocarditis Following COVID-19 mRNA Vaccination in Adults Aged 18 Years or Older. JAMA Intern Med, 181(12), 1668-1670. doi:10.1001/jamainternmed.2021.5511. https://www.ncbi.nlm.nih.gov/pubmed/34605853
  2000. Singer, M. E., Taub, I. B., & Kaelber, D. C. (2021). Risk of Myocarditis from COVID-19 Infection in People Under Age 20: A Population-Based Analysis. medRxiv. doi:10.1101/2021.07.23.21260998. https://www.ncbi.nlm.nih.gov/pubmed/34341797
  2001. Smith, C., Odd, D., Harwood, R., Ward, J., Linney, M., Clark, M., . . . Fraser, L. K. (2021). Deaths in children and young people in England after SARS-CoV-2 infection during the first pandemic year. Nat Med. doi:10.1038/s41591-021-01578-1. https://www.ncbi.nlm.nih.gov/pubmed/34764489
  2002. Snapiri, O., Rosenberg Danziger, C., Shirman, N., Weissbach, A., Lowenthal, A., Ayalon, I., . . . Bilavsky, E. (2021). Transient Cardiac Injury in Adolescents Receiving the BNT162b2 mRNA COVID-19 Vaccine. Pediatr Infect Dis J, 40(10), e360-e363. doi:10.1097/INF.0000000000003235. https://www.ncbi.nlm.nih.gov/pubmed/34077949
  2003. Spinner, J. A., Julien, C. L., Olayinka, L., Dreyer, W. J., Bocchini, C. E., Munoz, F. M., & Devaraj, S. (2021). SARS-CoV-2 anti-spike antibodies after vaccination in pediatric heart transplantation: A first report. J Heart Lung Transplant. doi:10.1016/j.healun.2021.11.001. https://www.ncbi.nlm.nih.gov/pubmed/34911654
  2004. Starekova, J., Bluemke, D. A., Bradham, W. S., Grist, T. M., Schiebler, M. L., & Reeder, S. B. (2021). Myocarditis Associated with mRNA COVID-19 Vaccination. Radiology, 301(2), E409-E411. doi:10.1148/radiol.2021211430. https://www.ncbi.nlm.nih.gov/pubmed/34282971
  2005. Sulemankhil, I., Abdelrahman, M., & Negi, S. I. (2021). Temporal association between the COVID-19 Ad26.COV2.S vaccine and acute myocarditis: A case report and literature review. Cardiovasc Revasc Med. doi:10.1016/j.carrev.2021.08.012. https://www.ncbi.nlm.nih.gov/pubmed/34420869
  2006. Tailor, P. D., Feighery, A. M., El-Sabawi, B., & Prasad, A. (2021). Case report: acute myocarditis following the second dose of mRNA-1273 SARS-CoV-2 vaccine. Eur Heart J Case Rep, 5(8), ytab319. doi:10.1093/ehjcr/ytab319. https://www.ncbi.nlm.nih.gov/pubmed/34514306
  2007. Takeda, M., Ishio, N., Shoji, T., Mori, N., Matsumoto, M., & Shikama, N. (2021). Eosinophilic Myocarditis Following Coronavirus Disease 2019 (COVID-19) Vaccination. Circ J. doi:10.1253/circj.CJ-21-0935. https://www.ncbi.nlm.nih.gov/pubmed/34955479
  2008. Team, C. C.-R., Food, & Drug, A. (2021). Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine – United States, December 14-23, 2020. MMWR Morb Mortal Wkly Rep, 70(2), 46-51. doi:10.15585/mmwr.mm7002e1. https://www.ncbi.nlm.nih.gov/pubmed/33444297
  2009. Thompson, M. G., Burgess, J. L., Naleway, A. L., Tyner, H., Yoon, S. K., Meece, J., . . . Gaglani, M. (2021). Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines. N Engl J Med, 385(4), 320-329. doi:10.1056/NEJMoa2107058. https://www.ncbi.nlm.nih.gov/pubmed/34192428
  2010. Tinoco, M., Leite, S., Faria, B., Cardoso, S., Von Hafe, P., Dias, G., . . . Lourenco, A. (2021). Perimyocarditis Following COVID-19 Vaccination. Clin Med Insights Cardiol, 15, 11795468211056634. doi:10.1177/11795468211056634. https://www.ncbi.nlm.nih.gov/pubmed/34866957
  2011. Truong, D. T., Dionne, A., Muniz, J. C., McHugh, K. E., Portman, M. A., Lambert, L. M., . . . Newburger, J. W. (2021). Clinically Suspected Myocarditis Temporally Related to COVID-19 Vaccination in Adolescents and Young Adults. Circulation. doi:10.1161/CIRCULATIONAHA.121.056583. https://www.ncbi.nlm.nih.gov/pubmed/34865500
  2012. Tutor, A., Unis, G., Ruiz, B., Bolaji, O. A., & Bob-Manuel, T. (2021). Spectrum of Suspected Cardiomyopathy Due to COVID-19: A Case Series. Curr Probl Cardiol, 46(10), 100926. doi:10.1016/j.cpcardiol.2021.100926. https://www.ncbi.nlm.nih.gov/pubmed/34311983
  2013. Umei, T. C., Kishino, Y., Shiraishi, Y., Inohara, T., Yuasa, S., & Fukuda, K. (2021). Recurrence of myopericarditis following mRNA COVID-19 vaccination in a male adolescent. CJC Open. doi:10.1016/j.cjco.2021.12.002. https://www.ncbi.nlm.nih.gov/pubmed/34904134
  2014. Vidula, M. K., Ambrose, M., Glassberg, H., Chokshi, N., Chen, T., Ferrari, V. A., & Han, Y. (2021). Myocarditis and Other Cardiovascular Complications of the mRNA-Based COVID-19 Vaccines. Cureus, 13(6), e15576. doi:10.7759/cureus.15576. https://www.ncbi.nlm.nih.gov/pubmed/34277198
  2015. Visclosky, T., Theyyunni, N., Klekowski, N., & Bradin, S. (2021). Myocarditis Following mRNA COVID-19 Vaccine. Pediatr Emerg Care, 37(11), 583-584. doi:10.1097/PEC.0000000000002557. https://www.ncbi.nlm.nih.gov/pubmed/34731877
  2016. Warren, C. M., Snow, T. T., Lee, A. S., Shah, M. M., Heider, A., Blomkalns, A., . . . Nadeau, K. C. (2021). Assessment of Allergic and Anaphylactic Reactions to mRNA COVID-19 Vaccines With Confirmatory Testing in a US Regional Health System. JAMA Netw Open, 4(9), e2125524. doi:10.1001/jamanetworkopen.2021.25524. https://www.ncbi.nlm.nih.gov/pubmed/34533570
  2017. Watkins, K., Griffin, G., Septaric, K., & Simon, E. L. (2021). Myocarditis after BNT162b2 vaccination in a healthy male. Am J Emerg Med, 50, 815 e811-815 e812. doi:10.1016/j.ajem.2021.06.051. https://www.ncbi.nlm.nih.gov/pubmed/34229940
  2018. Weitzman, E. R., Sherman, A. C., & Levy, O. (2021). SARS-CoV-2 mRNA Vaccine Attitudes as Expressed in U.S. FDA Public Commentary: Need for a Public-Private Partnership in a Learning Immunization System. Front Public Health, 9, 695807. doi:10.3389/fpubh.2021.695807. https://www.ncbi.nlm.nih.gov/pubmed/34336774
  2019. Welsh, K. J., Baumblatt, J., Chege, W., Goud, R., & Nair, N. (2021). Thrombocytopenia including immune thrombocytopenia after receipt of mRNA COVID-19 vaccines reported to the Vaccine Adverse Event Reporting System (VAERS). Vaccine, 39(25), 3329-3332. doi:10.1016/j.vaccine.2021.04.054. https://www.ncbi.nlm.nih.gov/pubmed/34006408
  2020. Witberg, G., Barda, N., Hoss, S., Richter, I., Wiessman, M., Aviv, Y., . . . Kornowski, R. (2021). Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. N Engl J Med, 385(23), 2132-2139. doi:10.1056/NEJMoa2110737. https://www.ncbi.nlm.nih.gov/pubmed/34614329
  2021. Zimmermann, P., & Curtis, N. (2020). Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child. doi:10.1136/archdischild-2020-320338. https://www.ncbi.nlm.nih.gov/pubmed/33262177

China o la esclavitud moderna que viene. Neijuan.

Fábricas con rejas y redes anti suicidios en FOXCONN, donde fabrican tu iPhone para que puedas colgar vídeos de gatitos.

En septiembre pasado, un estudiante de élite de la Universidad Tsinghua de Beijing fue captado en video andando en bicicleta por la noche y trabajando en una computadora portátil apoyada en su manillar. Las imágenes circularon en las redes sociales chinas y, poco después , aparecieron en línea más fotos de otros estudiantes de Tsinghua, desplomados en las mesas de la cafetería, enterrados bajo pilas de libros de texto. Los comentaristas procedieron a criticar la loca ética de trabajo que se mostraba y etiquetaron a los estudiantes como parte de una generación creciente de jóvenes «involucionados». El ciclista se convirtió en un meme—“El rey enrevesado de Tsinghua”— y una serie de publicaciones de blog en las redes sociales chinas criticaron la “involución de la educación de élite”, mientras que un artículo publicado por la agencia de noticias estatal Xinhua analizó la “involución de los estudiantes universitarios”. Cuando llegó el invierno, la idea de la involución se había extendido a todos los rincones de la sociedad china.

El antropólogo estadounidense Clifford Geertz ayudó a popularizar el término en su libro » Involución agrícola «, de 1963, en el que analizó la respuesta económica de Java al crecimiento de la población y el dominio colonial holandés. La teoría de la involución de Geertz sostiene que un mayor insumo (un aumento en la mano de obra) no produce una producción proporcional (más cultivos e innovación). En cambio, una sociedad involuciona. El término chino para involución, neijuan , que se compone de los caracteres «adentro» y «rodando», sugiere un proceso que se enrosca hacia adentro, atrapando a sus participantes dentro de lo que el antropólogo Xiang Biao ha descrito como un » ciclo interminable de auto- flagelación.” La involución es “la experiencia de estar atrapado en una competencia que uno finalmente sabe que no tiene sentido”, me dijo Biao. Es aceleración sin destino, progreso sin propósito, Sísifo haciendo girar las ruedas de un Pelotón en movimiento perpetuo.

El concepto de China como una sociedad acosada por la involución ganó fuerza, la primavera pasada, en Douban, un sitio de redes sociales popular entre los estudiantes universitarios, en un hilo de discusión llamado “basura 985”. El nombre hace referencia al Proyecto 985, un consorcio de universidades chinas de élite similar a la Ivy League, y la realidad compartida de que muchos estudiantes de estas instituciones se sienten como “basura”: ansiosos, estresados, con exceso de trabajo, atrapados en una carrera por el estatus. El hilo creció a medida que los participantes lamentaban el intrincado mercado laboral (finanzas o análisis de datos, ¿qué camino es más complicado? ), criticaban los complicados exámenes de ingreso ( realizar y reprobar el examen de CPA cinco veces) y lamentaban la involución de la economía pospandémica.. “Los jóvenes solo pueden ver una forma de reclamar su dignidad y ser reconocidos como personas”, dijo Biao. Y, en la mayoría de los casos, esa forma es obtener las mejores calificaciones, conseguir un trabajo bien remunerado, comprar un apartamento y encontrar un cónyuge con un rendimiento similar.

El meme de la involución se ha extendido desde los campus universitarios hasta lo que para muchos graduados es su próximo destino: la industria tecnológica hipercompetitiva de China. Los trabajadores tecnológicos han comenzado a sentir la revolución de sus vidas: los empleados en grandes empresas tecnológicas a menudo trabajan en horarios conocidos como «996» (de nueve de la mañana a nueve de la noche, seis días a la semana). Mientras que «996» fue una vez una insignia de honor, la frase ahora se pronuncia con desesperación irónica y se ha incrementado en nuevas iteraciones como «007» (trabajando en línea las veinticuatro horas del día, los siete días de la semana). Al igual que los estudiantes, los trabajadores de la tecnología se resisten a una idea ofrecida por el mundo empresarial y el gobierno: que el sector de la tecnología, impulsado por la competencia de mercado decidida y el ajetreo implacable de su fuerza laboral, impulsará a China hacia un futuro de riqueza y comodidad.

Es un ideal que lleva a los estudiantes universitarios a trabajar horas inhumanas e impulsa a los jóvenes trabajadores migrantes a luchar en nombre de Meituan, una empresa de comercio electrónico y servicios de entrega con una » victoria o muerte «.” ética. También es la base de las tácticas despiadadas de la industria tecnológica, incluidas las campañas de difamación y la copia desvergonzada de los competidores. Y, sí, China ciertamente ha sido transformada por la tecnología: con solo deslizar un teléfono, el trabajador moderno puede pedir un panqueque de cebolleta en la puerta de su casa y llamar a un conductor de Didi a donde quiera ir. Las cámaras de reconocimiento facial registran la asistencia a las escuelas y los algoritmos ayudan a asignar las tareas laborales. Pero muchos trabajadores tecnológicos, después de haber escalado y optimizado sus vidas, sienten que se han vuelto como sus dispositivos: intercambiables y adornados con un brillo de productividad, sin un propósito real superior.

En busca de alternativas, algunos han comenzado a abrazar el marxismo, organizando grupos de lectura de “ Das Kapital ” y repasando canciones revolucionarias de izquierda de la Unión Soviética. En las empresas de Internet, los ingenieros de software han protestado por sus condiciones de trabajo en GitHub, una plataforma de hospedaje de codificación, compartiendo sus abrumadores horarios y redactando peticiones para mejorar la situación. Otros han adoptado mecanismos de afrontamiento similares a los de los desertores de Silicon Valley: renunciar a sus trabajos, unirse a comunas remotas, establecer versiones chinas de Burning Man y desarrollar un enfoque «budista» (es decir, relajado y laissez-faire) para vida. Algunos jóvenes chinos han abrazado cantó—una actitud de apatía sardónica y nihilismo. “Quería luchar por el socialismo hoy”, escribió Zhao Zengliang , una personalidad de Internet de veintisiete años , en una publicación representativa. “Pero el clima es tan terriblemente frío que solo puedo acostarme en la cama para jugar con mi teléfono móvil”.

Nombrar una condición como involución es un acto de liberación y un paso hacia la cura. El problema con la involución es que se ha vuelto omnipresente. Fue una de las palabras chinas más utilizadas en 2020 y se ha utilizado para describir muchas cosas. He leído sobre la involución de blockchain , eventos de formación de equipos , la industria de la logística , aplicaciones de MBA . Me he encontrado con una versión marxista de la involución, una lectura weberiana e incluso una interpretación confuciana . he aprendido sobrela involución de los juegos en línea, un espíritu de jugador que ha absorbido el espíritu de juego, y la involución del mercado matrimonial , un proceso a través del cual las personas solteras luchan por un grupo cada vez menor de parejas dignas.

En lugar de permitir que nuestras palabras “se deterioren hasta convertirse en un fango de vagas intenciones”, como escribió Rebecca Solnit , ¿qué pasaría si nombramos las cosas con mayor verdad y precisión? ¿Qué pasaría si la gente llamara a las horas brutales impuestas por la industria tecnológica «feudalismo corporativo» y las peligrosas demandas impuestas a los trabajadores de entrega como una forma de explotación? ¿Qué pasa si los estudiantes que trabajan duro frente a sus computadoras, agotados y cansados, no son involutivos sino, más bien, para tomar prestada una frase del difunto David Graeber, víctimas de una profunda «violencia espiritual»? ¿Qué pasaría si usáramos un término más explícito para describir los efectos de un sistema intrincado, como, digamos, “autoritarismo tecnocapitalista”?

En diciembre pasado, una empleada de veintidós años de apellido Zhang en la empresa de comercio electrónico Pinduoduo se derrumbó en el suelo en medio de la noche, camino a su casa del trabajo, y murió seis horas después, aparentemente por agotamiento y exceso de trabajo . . Dos semanas después, otro empleado de Pinduoduo saltó a la muerte durante una visita a sus padres, supuestamente después de que lo despidieran por criticar la cultura laboral de la empresa. En respuesta a una ola de ira y agravio, la compañía pareció desestimar la muerte de Zhang y publicó un comentario en su cuenta oficial de redes sociales: «¿Quién no ha cambiado su vida por dinero?».

Involution pasó a primer plano una vez más, cuando los comentaristas en línea intentaron dar sentido a la muerte de dos jóvenes a través de su lente. Leo compulsivamente publicaciones en WeChat con títulos como «Ha muerto un empleado de Pinduoduo, ¿por qué descendimos a una era de involución?» y “Involución del lugar de trabajo bajo el modelo Pinduoduo”. En contraste con la explotación, la supresión o incluso la alienación, la involución se presenta como parte del orden natural de las cosas, como el mal tiempo. No se puede señalar con el dedo una abstracción o protestar contra un término anticuado de un texto de antropología.

En muchos sentidos, la aflicción de la involución de China no es diferente de la meritocracia despiadada de Estados Unidos. Pero la crisis de China es única en la severidad de su miopía y sus métodos de atrapamiento. El joven estudiante de secundaria, desilusionado con la monotonía de la escuela, no puede acceder fácilmente a subculturas subversivas o explorar formas alternativas de vida, porque, cada vez más, esa información es considerada “vulgar” o “inmoral” y prohibida por el gobierno, borrada de la esfera digital. en nombre de “promover la energía positiva”. El repartidor, en busca de mejores condiciones de trabajo, no puede protestar por sus agravios ni organizar a sus compañeros en un sindicato independiente, porque teme con razón que lo detengan. El oficinista desilusionado, en lugar de actuar, probablemente se hundirá más en la silla de su escritorio.

Yi-Ling Liu es una escritora independiente que vive en Beijing.

Lo que la progresía de izquierdas y derechas esconde.

ELUSIONES
 

13. El dinero fiduciario

Esta es una de las claves de bóveda de la dominación imperial hollycapitalista.

De nuevo hay que hablar de hollycapitalismo porque el dinero es la mayor de las ficciones del sistema.

Comprender los mecanismos de creación de dinero fiduciario por parte de los bancos centrales, la deuda soberana y el sistema de reserva fraccionaria, en sus vinculaciones con la geopolítica global, el control de los recursos energéticos y las guerras de divisas, es fundamental para comprender el funcionamiento del sistema.

Así como el hecho de que toda esta mecánica escapa por completo al poder de la mayoría de los estados y es de hecho uno de los mecanismos a través de los cuales estos son controlados por los grandes capitales.



14. El reseteo monetario

Como correlato de la falta de comprensión, debate y denuncia del sistema monetario fiduciario, las falsas izquierdas eluden tratar de la situación crítica de bancarrota en que hoy nos encontramos, del hecho de que esta situación nos llevará tarde o temprano a un reseteo monetario global o a una tercera guerra mundial.

Junto a ello las falsas izquierdas tenderán a eludir todo lo relacionado con los metales preciosos y su utilización milenaria como respaldo de monedas.

Sobre todo teniendo en cuenta que este es el modelo que defienden los BRICS y que está siendo motivo de confrontación feroz al más alto nivel.



15. La tercera guerra mundial

Según muchos analistas estamos ya inmersos en los prolegómenos de una tercera mundial, que se está librando ya entre el imperio atlantista-sionista y los BRICS en forma de,

  • guerra de divisas
  • devaluación del petróleo
  • sanciones
  • pretendidos accidentes industriales y de aviación
  • guerra de propaganda,

…y otras formas de guerra no convencional.

En la práctica las grandes potencias están enfrentándose indirectamente a través de fuerzas de terceros países o de ejércitos proxy.

Este tema tiende a ser eludido por las falsas izquierdas, así como el papel que los diversos estados desempeñan en el entramado global de alianzas, convenios y ejercicios militares, de manera que en el caso más que probable de una escalada del conflicto global los posicionamientos de cada estado serán ya difícilmente modificables.



16. El terrorismo

Como una de las formas fundamentales de guerra no convencional, el verdadero alcance del terrorismo internacional es otra de las piedras de toque de las falsas izquierdas.

Estas tienden a adoptar la narrativa oficial según la cual los estados occidentales son los «buenos» y los terroristas son los «malos».

Como mucho reconocerán el papel que estados totalitarios aliados de Occidente como Israel, Arabia Saudí y Turquía juegan en esta guerra proxy.

Pero pocos movimientos de izquierda llegarán a comprender, reconocer y denunciar que el terrorismo internacional es hoy uno de los mecanismos de dominación hollycapitalistas fundamentales, controlado de diversas maneras por las agencias de inteligencia occidentales (CIANSA, MI6, Mossad y otras), y utilizado en un amplio rango de operaciones que van desde,

  • la presión política y geopolítica
  • la desestabilización a la guerra civil
  • atentados de bandera falsa en los propios estados que controlan el terrorismo para legitimar la implementación de estados policiales
  • dictaduras,

…y en general la agenda globalista.



17. Las crisis ingenierizadas

Junto al terrorismo de estado encubierto toda una serie de fenómenos que hoy padecemos son en su mayor parte crisis híbridas, en parte espontáneas y en parte ingenierizadas.

Tras la segunda guerra mundial, las guerras convencionales (hasta la de tercera generación) tienden a desaparecen y a ser sustituidas por guerras no convencionales, híbridas o asimétricas (de cuarta y quinta generación) enmascaradas detrás de estas crisis ingenierizadas de todo tipo:

  • revoluciones de color
  • crisis migratorias ingenierizadas
  • golpes de estado encubiertos
  • «accidentes» tecnológicos y de transportes provocados
  • pandemias de laboratorio
  • manipulaciones climáticas
  • catástrofes «naturales» geoingenierizadas, etc.

Lo que se echa en falta sistemáticamente en las pretendidas izquierdas es comprender y denunciar el papel que estas crisis ingenierizadas están desempeñando y seguirán haciéndolo en las próximas décadas en los mecanismos de dominación global y en la implementación del Nuevo Orden Mundial.



18. Los transgénicos

Se pueden considerar también una forma de guerra de cuarta y quinta generación, en la medida en que persiguen no solo la conquista del mercado global de alimentos, sino también la destrucción encubierta de la agricultura y la ganadería tradicionales.

Pero lo que está en el trasfondo de los transgénicos es mucho más crucial, y pocos movimientos de izquierda están llegando tan lejos como para comprenderlo o reconocerlo.

Y es que lo que se enmascara detrás de los organismos genéticamente modificados es la manipulación encubierta de la especie humana y, en última instancia, su transformación en ganado-mercancía.



19. El transhumanismo

Vinculado al anterior, el transhumanismo es otro de los caballos de Troya del sometimiento total del ser humano y su transformación en mercancía, en el marco de redes de inteligencia artificial y cibernéticas.

La estrategia fundamental en este caso es presentarnos el transhumanismo como un «progreso» beneficioso para el hombre, en particular en el ámbito de la medicina o la asistencia en diversas actividades, pero utilizando esto como una cortina de humo para encubrir el proyecto de domesticación y control total de los cuerpos y de las mentes que esta agenda implica, mediante el uso de diversos dispositivos tales como,

microchips implantables y nanoparticulas inteligentes que ya invaden, controlan y manipulan nuestros órganos de manera encubierta.



20. La geoingeniería

Vinculada al resto de los temas, la geoingeniería es uno de los fenómenos más ausentes en los movimientos de falsa izquierda, y más importantes para la agenda de implementación del Nuevo Orden Mundial.

Consiste en la fumigación generalizada de sustancias químicas, sintéticas y orgánicas, mediante estelas químicas o chemtrails, que generan las condiciones para proyectar ondas electromagnéticas desde estaciones tipo HAARP.

Con ello puede manipularse el clima, generar sequías, inundaciones, huracanes, terremotos y maremotos, y modificar globalmente el clima. El cambio climático es un gran montaje hollycapitalista, creado en parte mediante geoingeniería, para el avance en la agenda globalista.

Como decíamos, la geoingeniería permite también el control y la manipulación de las poblaciones mediante técnicas psicotrónicas, usando nanoparticulas inteligentes que invaden los cuerpos, afectan a funciones biológicas y neurológicas específicas, y contribuyen a domesticar o a instigar movimientos de masas.



21. La ingeniería social

Aunque ya hemos hablado de este tema al tratar sobre el transgenerismo, el feminismo y la violencia de género, merece la pena insistir en que la ingeniería social es uno de los mecanismos de dominación hollycapitalistas fundamentales.

El frente fundamental de estas estrategias de transformación social son los medios de masas, las películas, las series, las redes sociales, pero también las instituciones culturales y educativas en las que esta agenda de manipulación y destrucción de las formas de vida tradicionales se presenta como «teoría».

Las formas de vida alternativas deben ser respetadas.

Pero eso es una cosa y otra muy distinta hacer de la anomalía el paradigma.



22. El gobierno en la sombra

Las falsas izquierdas tienden a pasar por alto el papel central que,

…desempeñan en la dominación global.

El grado de infiltración de estas estructuras de poder en los estados, las instituciones, las iglesias, y en general las distintas organizaciones sociales, es fundamental para comprender como funciona el mundo.

Como decíamos, pocos movimientos pretendidamente de izquierdas comprenden o quieren comprender que los mecanismos de dominación y de transformación hollycapitalistas dependen de estas estructuras ocultas, que operan detrás de las estructuras visibles del sistema, desde el secretismo, la amoralidad, la alegalidad, la impunidad y la criminalidad, al servicio del proyecto globalista.
 


23. El Nuevo Orden Mundial

Esta es otra de las piedras de toque para reconocer los falsos movimientos de izquierda.

El Nuevo Orden Mundial es el objetivo en el que confluyen las distintas agendas de los distintos ámbitos y a las distintas escalas.

Se trata de un proceso de largo alcance, que se remonta al menos a la Ilustración, y que supone la instauración progresiva y continua, pero también escalonada, de este gobierno mundial, mediante la instigación de revoluciones de un signo y de otro, de guerras, el control de mecanismos mercantiles, financieros y monetarios, la ingenierización de shocks de todo tipo, etc.
 


24. El comunismo

En relación con la agenda secular del Nuevo Orden Mundial, como es evidente las falsas izquierdas no sabrán o no reconocerán que el comunismo ha sido en parte un fenómeno instigado por las sociedades secretas atlantistas-sionistas para catalizar conflictos mundiales, justificar la carrera armamentística, destruir culturas tradicionales milenarias como la rusa y la china, homogeneizar su nivel de desarrollo con el occidental.

De hecho todo el izquierdismo en general puede ser interpretado como un fenómeno de disidencia controlada y de recuperación por parte de estas élites.



25. El nazismo y el antisemitismo

La demonización del nazismo es otra de las estrategias del imperio hollycapitalista para, asociándola a él, descalificar cualquier iniciativa de soberanía nacional que suponga una alternativa real al globalismo, basada en valores verdaderamente anti-hollycapitalistas, esto es, valores tradicionales, identitarios, raciales, espirituales, religiosos, es suma, valores propios de seres colectivos encarnados.

Pocos movimientos de izquierda reconocerán que las élites atlantistas-sionistas instigaron tanto la revolución bolchevique como el nazismo alemán para desencadenar la segunda guerra mundial y resolver la crisis de 1929.

  • La victimización de los judíos
  • Las manipulaciones históricas y mediáticas de su genocidio
  • El abuso del concepto de antisemitismo
  • Las leyes de excepción que los protegen
  • El poder desmedido de los grupos de presión sionistas
  • La proporción desmedida de sionistas en la política, la economía, la cultura y el espectáculo
  • El papel central de Israel en la geopolítica mundial, etc.,

…son todos elementos fundamentales para comprender cómo funciona el imperio atlantista-sionista y elusiones habituales en los falsos movimientos de izquierda, a menudo financiados por entidades sionistas.
 


26. La religiosidad

Ya hemos avanzado que que el hollycapitalismo no es solo un sistema económico o político sino también una religión en toda regla, pero que se enmascara detrás de un supuesto secularismo:

  • los mecanismos de dominación hollycapitalistas fundamentales
  • los atentados terroristas de bandera falsa
  • las catástrofes «naturales» geoingenierizadas
  • las pandemias de laboratorio
  • las campañas mediáticas de ingeniería social
  • los mecanismos de manipulación hollywoodense en todos los ámbitos,

…no pueden comprenderse en todo su alcance si no es como rituales religiosos hierogámicos y sacrificiales orquestados por las sociedades secretas atlantistas-sionistas que atesoran este conocimiento desde hace milenios, al margen de los mecanismos de adoctrinamiento de las instituciones oficiales.
 


27. La exopolítica

Por último, el tema más tabú, más desconocido, más resbaladizo, en el que pocos se atreven a adentrarse, es el de la interacción de la raza humana con otras razas o entidades alienígenas o extraterrestres.

El tema es más político de lo que parece a primera vista en la medida en que estas entidades alienígenas o extraterrestres estarían influyendo decididamente en los desarrollos humanos.

Este tema podría ser utilizado también como una coartada para crear un evento de bandera falsa de gran alcance que sirviese para manipular a las masas de cara a la implementación del Nuevo Orden Mundial.

Pedro Bustamante en

https://www.bibliotecapleyades.net/ciencia2/ciencia_conscioussociopol267.htm

#Shadowbannig #Shadowban #Shadowbanned la censura en twitter

Recupero este viejo y hoy destartalado blog de wordpress sin uso desde hace casi 12 años. En él hay algunas entradas antiguas recuperadas de un blog particular que tenía en LoPaís a finales de la primera década del milenio. Aquel blog sufrió una censura continua sobre todo por desvelar la realidad del sionismo político. Guardo copia e incorporaré alguno de los cerca de 2000 posts una vez revisados. Los que se incluyen de momento han sufrido el paso del tiempo y también necesitan revisión ya que hay enlaces rotos y textos desconfigurados.

El motivo de reactivar este blog es la constante censura en twitter e intentar salvaguardar contenidos. De momento wordpress parece un espacio más seguro. Espero que siga así.

Tras salir de los blogs de Lopaís mantuve durante años una cuenta en twitter que contaba con más de 15000 seguidores y que a principio de 2020 cerré. Dicha cuenta tenía una orientación hacia la geopolítica y analizaba y acercaba noticias sobre guerras y conflictos, de forma especial Libia y Siria.

El cambio brutal del contexto por la aparición de la psyop del falso virus del Covid me motivó para la creación de una segunda cuenta @CarlosMontas13 que, a finales de 2021, fue cerrada «previa revisión» sin más explicaciones. La cuenta tenía más de 7000 seguidores y un crecimiento exponencial diario.

Captura de la cuenta suspendida.
Suspendida permanentemente por incumplir «las reglas». En realidad suspendida por denunciar las mentiras y la farsa a la que tienen sometida a la población mundial y acercar los testimonios de miles de médicos, biólogos y científicos de todo el mundo que han demostrado la inconsistencia del relato sobre el COVID.

Inmediatamente después abrí una nueva cuenta que permanece abierta pero sometida desde su inicio al control, la censura y el shadow bann más extremo.

La nueva cuenta principal permanece abierta pero , obviamente, está bajo amenaza.

Ya en los primeros días me obligaron a retirar algún twitt. Este, por ejemplo:

Bloqueos por twits. Verificaciones. Peticiones de tlf o de correo electrónico se han sucedido y se siguen sucediendo. Las imágenes de arriba son un ejemplo pero tengo más.

Pero ha ido a más y, supongo que por medio de algún algoritmo, la cuenta es cercenada y limitada hasta límites absurdos. Es una obviedad que, yo creo, no soy una gran amenaza ya que hay muchas cuentas mucho más disruptivas que la mía. No obstante el shadow banning continúa y twitter sigue invisibilizando mis entradas. Por ejemplo, en el caso de los hilos si accedes a algún twit del hilo no deja ver el resto.

Hilo invisibilizado.

Chequeando con herramientas disponibles el resultado es que estoy censurado con varios parámetros.

No aparezco en las búsquedas. No aparezco en inicio para mis seguidores y, además, tampoco me aparecen a mi.

Otro ejemplo con otra herramienta.

Tanto es así que para poder ver a algunos seguidores con los que más interactúo he tenido que crear listas reducidas. Pese a todo, y como he podido confirmar, mis comentarios en sus cuentas no son visibles para ellos. Me censuran a mi y a la vez también censuran sus propias entradas. Las listas de momento cerradas las abriré a todos.

También los avisos de «peligrosidad» han sido constantes para disuadir de entrar en el perfil.

EL último chequeo con otra herramienta.

Nadie dijo que esto fuera fácil y, aunque la experiencia es algo humillante y he tenido la tentación de abandonar la red social, voy a seguir en ella en la medida que hay cuentas geniales de las que aprendo y comparto mucha información y también puedo compartir yo otras cosas que son de interés para todos.

Durante unos días voy a reducir el número de interacciones y trataré de estar más vigilante, sin reducir contenidos, con palabras que puedan ser detectadas por el algoritmo. Voy a ver si con esas medidas el baneo desaparece. Igualmente y como he dicho arriba trataré de realizar el mayor número de entradas a través de este blog que también representa la posibilidad de editar textos largos incluyendo más material.

.

Mind Control Patents

  • US3014477 Hypnotic Inducer (Mind Control Machine)
  • US3060795 Apparatus For Producing Visual Stimulation (Subconscious Transmission via Movie Film)
  • US3278676 Apparatus For Producing Visual and Auditory Stimulation (Subconscious Transmission via TV)
  • US3393279 Nervous System Excitation Device
  • US3563246 Method and Apparatus For Improving Neural Performance In Human Subjects By Electrotherapy
  • US3629521 Hearing Systems (RF/Microwave)
  • US3712292 Method Of and Apparatus For Producing Swept Frequency Modulated Audio Signal Patterns For Inducing Sleep (Brain Frequencies Broadcast)
  • US3884218 Method of Inducing and Maintaining Stages Of Sleep in the Human Being (FFR – Frequency Following Response Microwave)
  • US3951134 Apparatus and Method For Remotely Monitoring and Altering Brain Waves (RF/Electromagnetic Waves)
  • US4395600 Auditory Subliminal Message System and Method (Subliminal Brainwash via Music or Other Sound)
  • US4717343 Method Of Changing A Person’s Behavior (Subconscious Brainwash via Video)
  • US4777529 Auditory Subliminal Programming System (Silent Brainwash Via Music or Other Sound)
  • US4834701 Apparatus For Inducing Frequency Reduction In Brain Wave (FFR – Brain Frequencies Transmission)
  • US4858612 Hearing Device (Microwave Hearing)
  • US4877027 Hearing System (Microwave Hearing via open air Broadcast)
  • US5159703 Silent Subliminal Presentation System (aka Silent Sound – Microwave)
  • US5356368 Method Of and Apparatus For Inducing Desired States Of Consciousness (FFR/EEG Waveforms By Broadcast)
  • US5774088 Method and System For Warning Birds Of Hazards (Microwave Hearing)
  • US5889870 Acoustic Heterodyne Device and Method (Ultrasound. Ventriloquist Effect.)
  • US6011991 Communication System and Method Including Brain Wave Analysis and/or Use of Brain Activity (Remote Viewing)
  • US6052336 Apparatus and Method Of Broadcasting Audible Sound Using Ultrasonic Sound As A Carrier (Ultrasound)
  • US6470214 Method and device For Implementing The Radio Frequency Hearing Effect (Microwave Hearing)
  • US6587729 Apparatus For Audibly Communicating Speech Using The Radio Frequency Hearing Effect (Microwave Hearing)
  • US8407063 Multi-User Remote Health Monitoring System With Biometrics Support
  • US2995633 Means For Aiding Hearing
  • US5123899 Method & System for Altering Consciousness
  • US4777529 Auditory Subliminal Programming System
  • US4858612 Hearing Device
  • US4877027 Hearing System
  • US3393279 Nervous System Excitation Device
  • US3629521 Hearing Systems
  • US3576185 Sleep-Inducing Method & Arrangement using Modulated Sound & Light
  • US3568347 Psycho-Acoustic Projector
  • US3647970 Method And System For Simplifying Speech Waveforms
  • US3773049 Apparatus for Treatment of Neuropsychic & Somatic Diseases with Heat
  • US3766331 Hearing Aid for Producing Sensations in the Brain
  • US3727616 Electronic System for Stimulation of Biological Systems
  • US3712292 Method & Apparatus for Producing Swept FM Audio Signal Patterns for Inducing Sleep
  • US3837331 System & Method for Controlling the Nervous System of a Living Organism
  • US3835833 Method for Obtaining Neurophysiological Effects
  • US3884218 Method of Inducing & Maintaining Various Stages of Sleep in the Human Being
  • US5935054 Magnetic Excitation of Sensory Resonances
  • US6017302 Subliminal Acoustic Manipulation of Nervous Systems
  • US6091994 Pulsative Manipulation of Nervous Systems
  • US6081744 Electric Fringe Field Generator for Manipulating Nervous Systems
  • US6167304 Pulse Variability in Electric Field Manipulation of Nervous Systems
  • US3967616 Multichannel System for & Multifactorial Method of Controlling the Nervous System of a Living Organism
  • US4082918 Audio Analgesic Unit
  • US4141344 Sound Recording System
  • US4227516 Apparatus for Electrophysiological Stimulation
  • US4191175 Method & Apparatus for Repetitively Producing a Noise-like Audible Signal
  • US4315501 Learning-Relaxation Device
  • US4335710 Device for the Induction of Specific Brain Wave Patterns
  • US4354505 Method of and Apparatus for Testing and Indicating Relaxation State of a Human Subject
  • US4508105 Shadow Generating Apparatus
  • US4395600 Auditory Subliminal Message System & Method
  • US4573449 Method for Stimulating the Falling Asleep and/or Relaxing Behavior of a Person
  • US4616261 Method & Apparatus for Generating Subliminal Visual Messages
  • US4717343 Method of Changing a Person’s Behavior
  • US4692118 Video Subconscious Display Attachment
  • US4699153 System for Assessing Verbal Psychobiological
  • US4734037 Message Screen
  • US4821326 Non-Audible Speech Generation Method & Apparatus
  • US4834701 Apparatus for Inducing Frequency Reduction in Brain Wave
  • US4883067 Method & Apparatus for Translating the EEG into Music
  • US4889526 Non-Invasive Method & Apparatus for Modulating Brain Signals
  • US4924744 Apparatus for Generating Sound through Low Frequency and Noise Modulation
  • US4958638 Non-Contact Vital Signs Monitor
  • US5017143 Method and Apparatus for Producing Subliminal Images
  • US5027208 Therapeutic Subliminal Imaging System
  • US5036858 Method & Apparatus for Changing Brain Wave Frequency
  • US5047994 Supersonic Bone Conduction Hearing Aid and Method
  • US5052401 Product Detector for a Steady Visual Evoked Potential Stimulator and Product Detector
  • US5128765 System for Implementing the Synchronized Superimposition of Subliminal Signals
  • US5134484 Superimposing Method & Apparatus Useful for Subliminal Messages
  • US5135468 Method & Apparatus of Varying the Brain State of a Person by Means of an Audio Signal
  • US5151080 Method & Apparatus for Inducing & Establishing a Changed State of Consciousness
  • US5159703 Silent Subliminal Presentation System
  • US5170381 Method for Mixing Audio Subliminal Recordings
  • US5175571 Glasses with Subliminal Message
  • US5194008 Subliminal Image Modulation Projection and Detection System and Method
  • US5213562 Method of Inducing Mental
  • US5215468 Method and Apparatus for Introducing Subliminal Changes to Audio Stimuli
  • US5221962 Subliminal Device having Manual Adjustment of Perception Level of Subliminal Messages
  • US5224864 Method of Recording and Reproducing Subliminal Signals that are 180 Degrees Out of Phase With
  • US5270800 Subliminal Message Generator
  • US5245666 Personal Subliminal Messaging System
  • US5289438 Method & Systemfor Altering Consciousness
  • US5330414 Brain Wave Inducing Apparatus
  • US5352181 Method & Recording for Producing Sounds and Messages
  • US5356368 Method & Apparatus for Inducing Desired States of Consciousness
  • US5392788 Method and Device for Interpreting Concepts and Conceptual Thought
  • US5479941 Device for Inducing Altered States of Consciousness
  • US5480374 Method and Apparatus for Reducing Physiological Stress
  • US5522386 Apparatus for Determination of the Condition of the Vegetative Part of the Nervous System
  • US5507291 Method & Apparatus for Remotely Determining Information as to Person’s Emotional State
  • US5539705 Ultrasonic Speech Translator and Communication System
  • US5551879 Dream State Teaching Machine
  • US5562597 Method & Apparatus for Reducing Physiological Stress
  • US5586967 Method & Recording for Producing Sounds and Messages to Achieve Alpha & Theta Brainwave States
  • US5644363 Apparatus for Superimposing Visual Subliminal Instructions on a Video Signal
  • US5649061 Device and Method for Estimating a Mental Decision
  • US5784124 Supraliminal Method of Education
  • US5868103 Method and Apparatus for Controlling an Animal
  • US5922016 Apparatus for Electric Stimulation of Auditory Nerves of a Human Being
  • US6039688 Therapeutic Behavior Modification Program
  • US6052336 Apparatus and Method of Broadcasting Audible Sound Using Ultrasonic Sound as a Carrier
  • US5954629 Brain Wave Inducing System
  • US5954630 FM Theta-Inducing Audible Sound
  • US6006188 Speech Signal Processing for Determining Psychological or Physiological Characteristics
  • US6122322 Subliminal Message Protection
  • US6135944 Method of Inducing Harmonious States of Being
  • US6239705 Intra-Oral Electronic Tracking Device
  • US6258022 Behavior Modification
  • US6292688 Method and Apparatus for Analyzing Neurological Response to Emotion-Inducing Stimuli
  • US6426919 Portable and Hand-Held Device for Making Humanly Audible Sounds
  • US6487531 Signal Injection Coupling into the Human Vocal Tract
  • US6488617 Method and Device for Producing a Desired Brain State
  • US6506148 Nervous System Manipulation by EM Fields from Monitors
  • US10129937 Controlling Flicker Caused By Multiple Light Sources
  • US7586271 Efficient Lighting (LED flicker fusion frequency manipulation)
  • US7460130 Method And System For Generation Storage And Distribution Of Omni-Directional Object Views
  • US7770796 Device For Producing A Laser Beam Of Reduced Coherency Using High-Frequency Modulation Of The Laser Diode Current And Optical Multiplexing Of The Output Laser Beam
  • US7043019 Copy Protection For Digital Motion Picture Image Data
  • US7744590 Red To Near Infrared Photobiomodulation Treatment Of The Visual System In VIsual System Disease Or Injury
  • US10008162 Liquid Crystal Display Device
  • US10231626 Imaging System And Method For Flourescence Guided Surgery
  • US9887775 Synchronized Infrared Beacon / Infrared Detection System
  • US6738105 Coherent Light Despeckling
  • US9122939 System And Method For Reading Optical Codes On Reflective Surfaces While Minimizing Flicker Perception Of Pulsed Illumination
  • US8657196 Systems And Methods Of Capturing Security Images In An Automated Data Reader
  • US8752768 Systems And Methods For Reading Color Optical Codes
  • US6367180 Electronic Illuminated House Sign
  • US7423801 Lens With SLM (Glasses that can manipulate the flicker fusion rate)
  • US6493154 Method And Apparatus For Further Enhanced High-Speed Perception (EHP) Of A Moving Object Using AN Optical Shutter Spectacle And The Method Of Visual Frame Rate Training
  • US7614750 Light Interaction States (LEDs can manipulate flicker fusion rate)
  • US7234641 Illumination Pulsing Method For Data Reader (LED signal communications that can manipulate flicker fusion frequency)
  • US8427727 Oscillating Mirror For Image Projection (holographic image projection that can manipulate flicker fusion rate)
  • US8848006 Tensor Displays (3D holographic image creator able to manipulate flicker fusion rate)

https://cybergnostic.fandom.com/wiki/Mind_Control_Patents